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a  b  s  t  r  a  c  t

Enhanced  sampling  has  increased  its importance  in simulations  of  large-scale  functional  dynamics  of
proteins.  “Multiscale  enhanced  sampling  (MSES)”  is  an  enhanced  sampling  method  applicable  to large
protein  systems,  in  which  all-atom  (MM)  sampling  is extended  through  a coupling  with  the accelerated
dynamics  of a coarse-grained  (CG)  model.  Here,  we  show  that  the sampling  efficiency  of  MSES can  be
further  improved  by using  multiple  CG  copies  instead  of  a single  CG model  and  by introducing  repulsive
forces  between  the  CG copies.  An application  to  chignolin  folding  in explicit  solvent  has  demonstrated  a
significant  improvement  in  sampling  efficiency  due  to  the  extension.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Large-scale protein functional dynamics are usually described
in the form of the free energy landscape derived from an all-atom
molecular dynamics (MD) simulation. Since a straightforward MD
simulation cannot cover the whole configurational space related to
the functional dynamics, even for moderate-size globular proteins,
the construction of the free-energy landscape requires acceleration
of configurational sampling or “enhanced sampling”. The temper-
ature replica exchange and related methods [1,2] are the best
known ways to enhance sampling. However, these methods do not
have good scalability, or it is difficult to enhance the sampling of
the whole protein molecule. There is another class of enhanced
sampling method such as steered or targeted MD  [3,4], umbrella
sampling [5], conformational flooding [6], and metadynamics [7],
which enhances the sampling along a pre-defined small dimen-
sional “reaction coordinates” or “collective variables”. The recent
successes of enhanced sampling in large proteins have mostly relied
on these methods together with proper choices of certain low-
dimensional collective variables. However, it faces a difficulty in
defining small dimensions when prior knowledge is not available.
For these reasons, enhanced sampling remains a challenge for large
proteins when the structural changes involve a considerable num-
ber of degrees of freedom.
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To solve these problems, in our previous work, we proposed
“multiscale enhanced sampling (MSES)”, in which a sufficiently
high dimensional space is sampled by steering the all-atom model
through a coarse-grained (CG) model [8,9]. The MSES system con-
tains an all-atom system composed of protein molecules and
surrounding solvents (MM;  the associated coordinate, rMM, and
momentum, pMM) and the corresponding coarse-grained system
(rCG and pCG). The Hamiltonian, H, of this system is given by

H = VMM(rMM) + KMM(pMM) + VCG(rCG) + KCG(pCG)

+ VMMCG(rMM, rCG), (1)

VMMCG = kMMCG[�MM(rMM) − �CG(rCG)]2 (2)

where VMM and VCG (KMM and KCG) are the potential (kinetic) ener-
gies for MM and CG, respectively, and the number of degrees of
freedom in CG, M,  is much smaller than that of MM,  N. The CG
model can be arbitrarily chosen with the help of prior knowledge
or experimental information. The last term, VMMCG, defines the cou-
pling (harmonic constraint) for K variables. Here, �CG (rCG) is a
K-dimensional projection of the CG coordinates, kMMCG is a force
constant to drive the MM system using the fast dynamics of the
CG system, and �MM (rMM) is a K-dimensional vector that is a pro-
jection of rMM onto the K-dimensional space. The coupled system
(including both MM and CG) is at thermal equilibrium at tempera-
ture T.

Extrapolation of the Hamiltonian in Eq. (1) to kMMCG = 0 elim-
inates the effects of biasing from VMMCG and yields an unbiased
free energy surface originating from the intrinsic VMM. To do this,
the Hamiltonian replica exchange method [10] is used, in which a
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number of replicated systems are simulated for various kMMCG
ranging from a large value to zero. The exchange probability
between replicas m and n having different values of km

MMCG and
kn

MMCG, satisfying the detailed balance condition, is given by

pmn = min(1,  exp(�mn)), (3)

with

�mn = ˇ(km
MMCG − kn

MMCG)([�MM(rm
MM) − �CG(rm

CG)]2

− [�MM(rn
MM) − �CG(rn

CG)]2) (4)

where  ̌ is the inverse temperature (=1/kBT; kB is the Boltzmann
constant). Eq. (3) indicates that the probability is determined by
the difference between �MM and �CG defined in the associated
K-dimensional space. Because K can be set much smaller than N,
�mn is kept small enough to provide a high exchange probability
pmn irrespective of the size of the MM system N. This guarantees
much higher scalability compared with the conventional tempera-
ture replica exchange method, where the difference in the potential
energy of MM (scaling up to N2) determines the exchange proba-
bility �mn.

A major concern in the MSES method, especially when it is
applied to large proteins in explicit solvent, is how to control the
dynamics of the CG system: CG may  be pulled and immobilized
by the reaction from MM whose motion tends to stay in a stable
basin. This situation may  occur when the coupling force on CG from
MM,  −∂VMMCG/∂rCG, dominates the CG intrinsic force, −∂VCG/∂rCG.
To solve this problem, the MSES method can be extended by cou-
pling additional CG models with the MM model. This method is
thus named “multiple-CG-driven MSES” or “mcMSES”. The variants
of the multiscale simulation using multiple MM and CG have also
been adopted in [11,12]. The Hamiltonian of mcMSES is given by

H = VMM(rMM) + KMM(pMM) +
L∑

i=1

{VCG,i(rCG,i) + KCG,i(pCG,i)

+ VMMCG,i(rMM, rCG,i)} +
L∑

i /=  j

VCG,i/CG,j(rCG,i, rCG,j), (5)

where L is the number of CG models, and rCG,i and pCG,i (i = 1,
2,. . .,  L) are the coordinate and momentum of the ith CG, respec-
tively. VMMCG,i and VCG,i/CG,j respectively denote the couplings
between MM and the ith CG and between the ith CG and the jth
CG. The coupled system (including MM and the CGs) is also at ther-
mal  equilibrium at temperature T (Figure 1). Note that the replica
exchange procedure is controlled only by VMMCG,i and is indepen-
dent of VCG,i/CG,j. The force on the ith CG can be derived as,

fCG,i = −∂VCG,i(rCG,i)

∂rCG,i

− ∂VMMCG,i(rMM, rCG,i)

∂rCG,i

−
L∑

j /=  i

∂VCG,i/CG,j(rCG,i, rCG,j)

∂rCG,j

(6)

Eq. (6) indicates that −∂VMMCG,i/∂rCG,i can be counterbalanced
by L − 1 terms of −∂VCG,i/CG,j/∂rCG,j, which in turn prevents CG from
being trapped in a stable basin of MM.  More significantly, as shown
below, this perturbation will become much more enhanced by
introducing a repulsive force between two  CG models, as in, e.g.,

VCG,i/CG,j = kCG,i/CG,j

1 + [�CG(rCG,i) − �CG(rCG,j)]
2/�2

(7)

where kCG,i/CG,j is a coupling constant and �2 is a measure of the
distance correlation. In summary, mcMSES has the potential of
increasing the sampling efficiency over that of the original MSES,
and this owes to the increased dynamic perturbations via the inter-
actions with MM and multiple CGs that are repulsive to each other.
The forms of Eqs. (5) and (7) may  not necessarily be optimal for all
simulation systems, but many other choices are possible, e.g., using
different VCG,i for each CG, different connectivities among MM and
CG models, or different coupling functions for Eqs. (2) and (7).

As an illustrative application, we performed mcMSES for samp-
ling the folding process of chignolin in explicit solvent. This system
has been frequently used for validation of the enhanced samp-
ling methods [8,13–18]. In our previous paper [8], the scalability
of the MSES was shown to be better than the temperature replica
exchange study [13].

Here, two CG copies were used in mcMSES, i.e., L = 2. The Hamil-
tonian can be simply written as

H = VMM(rMM) + KMM(pMM) +
2∑

i=1

{VCG,i(rCG,i) + KCG,i(pCG,i)

+ kMMCG,i[�MM(rMM) − �CG(rCG,i)]
2}1

+ [�CG(rCG,1) − �CG(rCG,2)]2/�2 (8)

The Hamiltonian replica exchange was conducted using replicas
with various values of kMMCG (here, the same value was used for two
CG copies, i.e., kMMCG kMMCG,1 = kMMCG,2) by use of the exchange
probability between replicas m and n with the following �mn.

�mn == ˇ(km
MMCG − kn

MMCG)({[�MM(rm
MM) − �CG(rm

CG,1)]2

+ [�MM(rm
MM) − �CG(rm

CG,2)]2} − {[�MM(rn
MM) − �CG(rn

CG,1)]2

+ [�MM(rn
MM) − �CG(rn

CG,2)]2}) (9)

Note that �mn in Eq. (9) contains two  terms for CG1 and CG2,
unlike a single term in Eq. (4), and this has the possibility of reducing
the exchange probability. However, this problem can be avoided
by using multiple CG models to improve the efficiency of the MM
dynamics enhancement via multiple CG models, appearing in the
use of much smaller values of kMMCG (see Section 2 for details).

In the following, we  present the results of mcMSES simulations
and demonstrate that the sampling ability of mcMSES is signifi-
cantly better than that of the original method. It is evidenced in the

Figure 1. Schematic drawing of Hamiltonian replica exchange mcMSES. Each mcMSES system includes a MM model and multiple CG models, which is at thermal equilibrium
at  temperature T (Eq. (5)). The solid lines indicate the coupling VMMCG,i between the MM and the ith CG (the thickness indicates the magnitude of kMMCG), while dashed lines
are  the couplings VCG,1/CG,2 between the ith and jth CGs. On the other hand, the original MSES system (Eq. (1)) consists of a single CG and thus has no VCG,1/CG,2coupling.



Download English Version:

https://daneshyari.com/en/article/5380265

Download Persian Version:

https://daneshyari.com/article/5380265

Daneshyari.com

https://daneshyari.com/en/article/5380265
https://daneshyari.com/article/5380265
https://daneshyari.com

