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a  b  s  t  r  a  c  t

Screened  Coulomb  interaction  in  dielectrics  is  often  used  as  an argument  for  a lower  exciton  binding
energy  and  easier  exciton  dissociation  in  a high  dielectric  material.  In  this  paper,  we  show  that  at
length  scales  of excitons  (10–20 Å), the  screened  Coulomb  law  is invalid  and  a  microscopic  (quantum
chemical)  description  is necessary  to  describe  the medium  effect  on exciton  dissociation.  The  exciton
dissociation  energy  decreases  with  increasing  dielectric  constant,  albeit  deviating  from  the  inversely  pro-
portional  relationship.  The  electron–hole  interaction  energy,  approximated  with  a point  charge  model,
is  apparently  not  affected  by the  dielectric  constant  of  the  environment.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the quest for more efficient organic photovoltaic devices
(OPVs), the use of materials with a high dielectric constant has been
suggested [1]. One reason why organic photovoltaic systems are
less efficient than inorganic solar cells like those based on silicon, is
the high exciton binding energy. This is commonly attributed to the
low dielectric constant of OPVs (ε ≈ 4) [2,3]. This idea is based on the
screened Coulomb law in ponderable materials, which tells us that
the interaction energy and force between point charges embedded
in such media are given by, respectively (in atomic units),

Uij = QiQj

εRij

Fij = QiQj(Rj − Ri)

εR3
ij

; ε ≥ 1.0
(1)

with Qi and Qj the point charges, Ri and Rj their positions, Rij the
distance between them and ε the (relative) dielectric constant of
the medium. By definition, ε ≥ 1.0, furthermore, ε is independent
of the type (plus or minus) of the charges, which means that like
(+/+, or −/−) and unlike (+/−)  interactions are equally reduced as
compared to the vacuum situation (ε = 1.0). A charge Qi in a cav-
ity of radius a, embedded in an infinite continuum with dielectric
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constant ε, gives rise to an induced charge on the cavity’s surface
(Born formula [4]):

Q ∗
i = −

(
1 − 1

ε

)
Qi (2)

which is independent of a. When a second charge (Qj) is introduced,
at a distance Rij so large that the total interaction energy, to first
order, can be written as [5]

Uij = 1
Rij

[
QiQj + 1

2
(Q ∗

i Qj + QiQ
∗
j )

]
(3)

i.e., if the polarisation comes only from the inducing charges sep-
arately without cross terms, then Eq. (2) can be inserted in Eq. (3)
giving Eq. (1).

Hence, Eq. (1) holds only for macroscopic situations, i.e.,  the
charges are averages over macroscopic volumes, although small
with respect to the actual size of the system, and therefore should
be at macroscopic distances (at least about 100 Å [6]) from each
other. However, an exciton generated in OPV materials consists of a
pair of unlike charges at a separation of 10–20 Å in a molecular, and
therefore highly anisotropic, polarisable environment. As a conse-
quence, Eq. (1) should not be used to describe or explain the charge
separation: the charges must already be farther separated before
the screened Coulomb law is applicable. Hence, it is not straight-
forward that the charges involved in an exciton behave like they
were in a macroscopic dielectric, and a more indepth consideration
of their behaviour is necessary to understand charge separation
in OPVs better. Therefore, in this contribution, the effective forces
between charges and exciton binding energies are studied in dif-
ferent materials, and the consequences for OPVs are discussed.
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The paper is structured as follows: below a short overview is
given of studies that are relevant for the topic at hand. In Section
2 the behaviour of point charges in inorganic C and Si clusters
is discussed, because the dielectric constants of these materials
are known. Subsequently, in Section 3, the dissociation of point
charges is modelled in different organic materials. The materials
are selected based on their different properties: one is a reference
alkane, one material contains dipoles, and one material contains
highly polarisable atoms. These materials can serve as side-chains
in organic photovoltaic polymers to enhance the dielectric con-
stant. In Section 4, the influence of a dielectricum on the exciton
binding in a typical donor–acceptor complex is investigated. In
Section 5, the findings of the previous sections are combined for
a typical photovoltaic system [7] to investigate the effect of the
dielectric constant on the exciton binding energy. Finally, in Sec-
tion 6, a summary is given of the most important conclusions: the
screened Coulomb law is not applicable for the description of an
arbitrary collection of charges and polarisabilities and microscopic
studies using QM/MM  methods are necessary to investigate the
effect of the medium on the exciton dissociation.

As early as 1982, Van Duijnen and Thole [8] noted that a
dielectric placed between two interacting charges increases the
interaction (εeff < 1.0). Later, Rullmann et al. [9] showed that micro-
scopic collections of (point) charges and polarisabilities show
behaviour that cannot be described by the simple expression of Eq.
(1), while De Vries and Van Duijnen [10] discussed the problems
associated with mixing macroscopic and microscopic descriptions
of such systems. In microscopic studies where deviations from Eq.
(1) were found — charges interacting more than in vacuo (εeff < 1.0),
even like charges attracting each other (εeff < 0.0) — were reported
[11–13].

In most efforts for calculating exciton binding energies by apply-
ing the Bethe-Salpeter equation the interaction is screened with
the (bulk) dielectric constant for interaction distances [14,15] well
below the 100 Å mentioned above. Interestingly, Deslippe et al.
[16] reported exciton interactions in carbon nanotubes, larger than
‘bare’ interactions, which they coined ‘anti-screening’.

A frequently recurring picture is that of a Coulomb potential
like Eq. (1) with indications of the interaction between charges in a
dielectricum. Gregg and Hanna [17] suggest that the strong interac-
tion in excitons is caused by the small dielectric constant in typical
OPVs (ε ≈ 4), in contrast with the free electron-hole pairs in inor-
ganic semiconductors (ε ≈ 15). In 2004, Gregg et al. [18] put this
even stronger: “Thus, increasing ε . . . leads to a greater average dis-
tance between the charges.” But there is also a warning: “Finally, ε
is a bulk quantity and is valid only over distances of many lattice
spacings; . . .”  Unfortunately, in following papers, this warning is
absent, and in the recent review of Clarke and Durrant [2] the dielec-
tric constant is still a very important parameter, and the Onsager
model, or more recently developed versions [19–23] of it, is still
the main [1] operative theory. [24] In all these works the expected
effect of the dielectric constant (or the permittivity) comes from
model calculations based on the Onsager model.

Lately, an increasing number of studies have been reported
in which microscopic descriptions are used for specific systems
[25–31]. However, also there the importance of the dielectric con-
stant is (often) mentioned [1,24,25].

2. Dielectric or not?

Recently Van Duijnen and Swart reported a Discrete Reaction
Field (DRF) [32] study on Sin-clusters [33] (n ranging from 3 to
∼5000) in which they arrived from first principles at the experi-
mental dielectric constant for the larger clusters (n = 1750, 4950).
In a correct treatment of the many-body polarisation in an arbitrary

Figure 1. Effective atomic polarisability of C and Si in C/Si4950-clusters in their
experimental (diamond) structures as a function of the distance to the centre.

collection of point charges and polarisabilities, the induced dipole
�p in the polarisable point p is determined by the local field, i.e.,  the
sum of the external field and the fields, tpq, of all dipoles induced
elsewhere:

�p = ˛p[E0
p +

∑
q /=  p

tpq�q] (4)

E0 consists of any applied field plus the field of any charge distri-
bution in the system [34–39]. The dipole–dipole interaction tensors
tpq in Eq. (4) contain only geometric parameters.

Hence, it is through the mutual orientation and distances that
the polarisable particles respond differently in various (local)
structures, which in the end makes the results sometimes counter-
intuitive and cannot be caught in the simple form of Eq. (1).

In DRF, the two-particle interactions are damped at short dis-
tances in order to avoid too large and unphysical results [34,40]. The
electric potentials, fields and field gradients of charges are damped
in a consistent way and the damped fields and dipole–dipole ten-
sors are the derivatives of the potential and the field, respectively
[32]. Eq. (4) for the many-particle problem can be put into matrix
form:

M = BE0 = [A−1 − T]
−1

E0 (5)

in which M is the vector of (self-consistent) induced dipoles, E0 the
vector of the initial field, A the block-diagonal matrix of the (vac-
uum) polarisabilities, and T the (off-diagonal) interaction tensors.
Hence, B is a normal (but many-body) polarisability thus leading to
an induction energy:

Uind = −1
2

E0BE0 (6)

By applying unit fields in x-,  y- and z-directions, the effective
mean polarisabilities are obtained from Eq. (5). We  note here that
the T-blocks in the condensed phases generally lead to effective
local polarisabilities that are smaller than the vacuum values [33].

Reversely, by fitting Eq. (5) to (experimental or calculated)
molecular polarisabilities, the vacuum, or ‘free-atom’ polaris-
abilities {˛p} are obtained. With these (‘input’) parameters the
polarisabilities of molecules – not belonging to the learning sets –
are calculated from Eq. (5) with experimental accuracy [41]. Typi-
cally, each ‘free’ atomic polarisability is independent of its ‘chemical
environment’: the latter is in all cases absorbed in the T-blocks of
B.

In Figure 1, the average (per atom) mean polarisablities of the
atoms of a cluster consisting of 4950 atoms of carbon and silicon in
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