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a  b  s  t  r  a  c  t

The  projected  unrestricted  coupled  cluster  wave  function  with  singly  and doubly  excited  clusters
(PUCCSD)  has  been  used  as  a source  of information  about the  T3 and  T4 cluster  contributions  in the
externally  corrected  CCSD  approach.  In  order  to  remove  the  spin  contamination  of  the  UCCSD  wave  func-
tion  the group  invariant  average  of  the  unitary  group  was  adapted.  Preliminary  results  presented  here
for  the  DZ  H8 model  system  show  surprisingly  good  agreement  with  the  exact  results,  particularly  in  the
case  of the  energy  contribution  of the  T4 cluster  to the  quasidegenerate  region  with  errors  of  less than
0.1  milihartree.
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1. Introduction

Extension of the applicability of the closed-shell coupled cluster
(CC) theory [1] to a qualitatively proper description of single and
multiple bond breaking phenomena requires the inclusion of highly
excited cluster components. Since an explicit consideration of such
clusters is still computationally very demanding, there is a need to
find some alternative solutions of these limitations. The perturba-
tive estimates of the highly excited clusters, mainly triply [2–8] and
quadruply [9,10], may  help here but the resulting CC approaches
are often limited to near equilibrium geometries yielding incor-
rect shapes of PES at larger internuclear distances. Replacing the
single-reference (SR) space by its multi-reference (MR) counter-
parts leads to the various types of the MR  CC approaches [11–14]
which can help in the quasidegenerate situations but their practical
application is still rather far from being routine.

Another interesting proposal to solve the above-mentioned
problem is suggested by Paldus the RMR  CCSD method [15] that
requires the cluster analysis of the MR  CISD wave function in order
to obtain the cluster amplitudes of the T3 and T4 operators which
are then used to correct the absolute term in the standard CCSD
[16–18] equations. Generally, the RMR  CCSD method is one of the
possible variants of the whole family of methods referred to as the

∗ Corresponding author.
E-mail address: robert.tobola@gmail.com

externally corrected CCSD (ecCCSD) approaches [19] for which dif-
ferent kinds of wave functions, such as UHF [20,21], VB [19,22,23]
and CASSCF [24], are used as a source of information about the
needed T3 and T4 contributions. Contrary to the standard SR CCS-
DTQ [25–27] approach the ecCCSD methods treat the amplitudes
of the T3 and T4 operators as independent variables when solving
the CC equations.

Performance of the RMR  CCSD method depends heavily on the
applied reference space in the MR  CISD calculation. And only in
the case of suitably selected reference configurations in the MR
CISD calculation the RMR  CCSD method offers good results [28].
And in this way, the applicability of this approach is restricted to
the situations where the correct MR  CISD calculations are feasible.
This feature makes the method not so easy to use in cases such
as breaking multiple bonds in order to properly describe the pro-
cess of dissociation of molecular systems such as the C2 and BN
molecules, not to mention the need to include in the reference space
the twelve-body excitations in the case of the calculation for the Cr2
molecule. Therefore, there is still a method needed that operates
on the wave function of a rich cluster structure and simultaneously
offers low cost related calculations.

Replacing the restricted Hartree–Fock (RHF) reference by its
unrestricted broken spin and symmetry [29–32] counterpart gen-
erally may  help in the CCSD calculation yielding, for example,
good dissociation energies with the computational costs of such
calculations being slightly higher. However, in the intermediate
bond-breaking region incorrect shapes of PES are often found [33].
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These effects are among others a consequence of spin contamina-
tion which is relatively large even in the highly correlated UHF-base
CCSD (UCCSD) wave function.

Qualitatively correct description of the quasidegenerate elec-
tronic ground state for the DZP H4 model [34,35] by the CCSDQ’
[20,21] method, where a single determinant UHF wave function
was used to estimate the T4 contribution in the ecCCSD equations,
gives reason to believe that much more complex UCCSD wave func-
tion can be a good source of information about cluster contributions
to the ecCCSD approach offering simultaneously the final results
without shortcomings, which appear in the calculations using the
original UCCSD method due to the spin contamination.

2. Theory

The externally corrected CCSD approach relies on a decou-
pling of the full CC (FCC) closed-shell equations spanned on singly
excited,
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variables when solving CC equations. The down index Ii with i = 1,
2 represents the set of the hole and particle one electron states
defining i-body excitation, while the down index I determines any
excitation. The upper index X represents the PUCCSD, PUHF and
FCI wave function. In the ecCCSD approach the terms �(1)

I1
and

�(2)
I2

are calculated only once and correct accordingly the absolute
term in the CCSD equations [19]. The ecCCSD energies can be next
calculated from the standard CCSD formula [16] with the cluster
amplitudes obtained by solving the above ecCCSD equations. The
missing amplitudes of the TX

1 , TX
3 , and TX

4 cluster operators can be
obtained, for example, via standard cluster analysis of the CI-type
wave function.

The energy calculated directly from the TX
1 and TX

2 cluster oper-
ators employing the standard CCSD formula [16] is indicated in this
Letter by the CCSD(X) acronym.

Let us consider two examples for better understanding of the
ecCCSD method. Namely, performing the cluster analysis of the FCI
wave function we can obtain the TFCI

1 , TFCI
2 , TFCI

3 and TFCI
4 cluster con-

tributions. Calculating then the CCSD(FCI) energy using the TFCI
1 and

TFCI
2 cluster contributions we obtain the exact (FCI) energy. In the

case of the ecCCSD calculation the result will be the same, namely
exact energy. A totally different situation we have in the case of
any approximate wave functions is; for example, when we use the
MR CISD wave function then the CCSD(MR CISD) energy will be
the same as the MR  CISD energy obtained by digitalization of the
CI matrix due to the unitarity of the CI wave function. However, in
the case of the RMR  CCSD calculation the final energy will represent
significant improvement compared to the MR  CISD calculation [28].
This observation is a key reason for which we  mainly concentrate
on the higher excited TX

3 and TX
4 cluster operators.

3. Cluster analysis

In the CCSD theory [1,16] the wave operator has an exponen-
tial form and for this reason we obtain up to the N-electron excited
disconnected excitations when acting on the reference configura-
tion. Unfortunately, most of these excitations do not correspond

to the real coupling between the cluster amplitudes while solving
the CCSD equations. Thus, in further deliberations on the cluster
analysis of the UCCSD wave function we will focus only on those
connected and disconnected excitations that directly correspond to
the relevant diagrammatic expressions [16,36] in the CCSD equa-
tions.

In order to simplify further considerations, it would be desir-
able to transform the UCCSD wave function defined by the T̂1 and
T̂2 cluster excitations into the CI-representation by suitably group-
ing of the connected and disconnected excitations into the one
CI-excitation. Finally, we  have the wave function with up to the
four-body CI-amplitudes and the UHF configurations |�(j)

Jj
〉, namely,

|�0〉 =
4∑

j=0
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tionship between the CC and the CI theory. In the case of the Ĉ3
and Ĉ4 excitations we have a slightly different situation because
of the lack of the T̂3 and T̂4 cluster operators in the standard CCSD
equations [16], namely,
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The next step is the projection in such way obtained wave
function on the RHF configurations |�(j)

Jj
〉 through the use of the

Thouless’ theorem [37] for a single determinantal wave function
which states that,
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1 ) |�J〉, (6)

with �J ≡ 〈�J|�J〉 representing the overlap between the UHF and

RHF configurations. The singly excited R̂(J)
1 operator in Eq. (6) is

defined as
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where the summation indices represent here the hole  ̨ and parti-
cle � one electron states determined with respect to each reference
|�J〉 configuration [37]. Scalar part of this operator, namely R(J) ≡
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1 |˛〉, is given by the matrix product G(J)[F(J)]
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are defined by the transformation matrix C(J) ≡ ||c(J)
ij
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i,j=1 between

the UHF and RHF spin–orbitals [21]. Indices M and N denote here
the total number of molecular spin–orbitals and the number of
electrons, respectively.

After this transformation, the wave function takes the following
form,
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When we  choose any |�J〉 configuration belonging to the full
symmetric representation of the special symmetry group as the
reference configuration |�0〉, the remaining configurations will be
presented as the effect of excitation operator GJ on the reference
configuration |�0〉 and the wave function will be expressed as fol-
lows:
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