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a  b  s  t  r  a  c  t

Superalloy  or  other  thermal  protective  materials  are  often  oxidized  seriously  at  high  temperature.  For
most  materials  diffusion  is the  controlling  step  of  oxidation.  During  oxidation,  stress  would  be  induced  by
growth  strain  and  it can  affect  the  diffusion  process  through  chemical  potential  and  diffusivity.  Governing
equation  for  diffusion  is derived  considering  chemo-mechanical  potential  and  diffusivity  affected  by
stress.  Oxidation  kinetics  is obtained  to  interpret  the  stress–diffusion  coupling  effects.  The  stress  and  its
gradient  influences  on oxidation  are  also  discussed.

© 2014  Elsevier  B.V.  All  rights  reserved.

It has been observed that significant mechanical stress may  gen-
erate in oxide film caused by the scale growth for superalloy or
other thermal protective materials during oxidation [1–5]. Stress is
crucial to the performance and reliability of the structures based
on these materials [1,6,7]. Growth strain is one of the mecha-
nisms to explain the stress generation, and it is related to the
oxidation kinetics [8–11]. For most materials the oxygen diffu-
sion through the grown oxide film is the control step of oxidation
[3,12]. Hence the oxide stress is determined by oxygen diffu-
sion process. In return, it has been demonstrated that the stress
can affect the diffusion [13–16]. The applied tensile stress would
accelerate the oxidation rate since it may  increase the diffusiv-
ity [13]. Meanwhile, stress in the oxide can change the oxygen
potential gradient which is the driven force for diffusion [17–19].
Therefore, it is necessary to consider the stress–diffusion coupling
effects to analyze the stress evolution and oxidation kinetics. In
this letter, we derive a governing equation for diffusion consid-
ering the growth stress, stress-dependent diffusivity as well as the
chemo-mechanical potential. The oxidation kinetics is predicted by
the proposed model and compared with the experimental results.
Then we investigate the stress and its gradient effects on diffu-
sion for oxidation kinetics. This finding is useful for interpreting
the mechanical behavior of oxide film/substrate structure during
oxidation.
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Generally, the oxide scale formation involves a sequence of
events including the adsorption of atomic oxygen at the substrate
surface at first stage. Then nucleation and growth occurs and a thin
oxide film forms until it covers the substrate surface at second
stage. The substrate is oxidized further and oxide scale thickens
with growth stress generated at third stage. Since the oxidation
reaction rate is faster than oxygen diffusion for most materials,
oxidation kinetics is dependent on oxygen diffusion at the third
stage. Therefore, we  focus on the diffusion process and analyze the
stress–diffusion coupling effects during oxide film growth, i.e. the
third stage.

The oxide/substrate structure can be modeled as a thin
film/substrate system with a migrating interface as illustrated in
Figure 1. For simplicity only half of the system is shown due to
symmetry. The origin of the axis Z is set at the center on the top
surface of the oxide. hox and H represent the thickness of the oxide
film and the system, respectively. During oxidation the oxide film
would grow laterally and it can be viewed as a path for oxygen
diffusion. Growth strain would be generated in the oxide since
the lateral growth is constrained by the substrate. As the oxide
film is quite thin the stress in the oxide is equi-biaxial and can
be expressed as �ox = Mox(εe

ox − εg), where �ox is the oxide stress,
εe

ox and εg represent the elastic strain and growth strain, respec-
tively, Mox = Eox/(1 − �ox) is the biaxial modulus of the oxide, Eox

and vox are the Young’s modulus and Poisson’s ratio of the oxide,
respectively [20]. According to Larche and Cahn’s theory [21] the
growth strain is related to the oxygen concentration and Pilling-
Bedworth’s ratio (PBR) as εg = ω(PBR1/3 − 1)[c(z) − cref], where ω is
the relaxation factor, c and cref are the oxygen concentration and
reference concentration respectively. The stress in the substrate �s
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Figure 1. Schematic of the oxide film/substrate system during oxidation.

can be estimated as �s = Msεe
s , where εe

s is its elastic strain and
Ms = Es/(1 − �s) is the biaxial modulus of the substrate, Es and vs are
the Young’s modulus and Poisson’s ratio of the substrate, respec-
tively. The force balance of the system requires that:∫ hox

0

�oxdz + �s(H − hox) = 0 (1)

The deformation continuity between the substrate and oxide
film leads to εe

ox = εe
s . Substitute the growth strain and stress

expressions into Eq. (1), the oxide stress is obtained as:

�ox =
M2

oxε0
∫ hox

0
c(z)dz

Moxhox + Ms(H − hox)

− Moxε0

[
c(z) − Ms(H − hox)

Moxhox + Ms(H − hox)
cref

]
(2)

Eq. (2) shows that the stress is proportional to the oxygen concen-
tration.

It can be seen that the stress in the oxide is induced by the
oxygen diffusion during oxidation from Eq. (2). For most metal
or ceramic materials, the oxygen diffusion controls the oxidation
kinetics since the reaction rate at the oxide film/substrate interface
is very fast. Based on Fick’s law the oxygen diffusion through the
oxide scale can be described as [12]:

∂c

∂t
+ ∇ · J = 0 (3)

where t represents the oxidation time, and J is the oxygen flux that
is given by:

J = − Dc

RT
∇� (4)

where D is the diffusion coefficient (diffusivity), R is the gas con-
stant, T is the absolute temperature, and � represents the chemical
potential of the oxygen.

The stress effects on the oxygen diffusion reflect in the chem-
ical potential and diffusion coefficient. When an oxygen atom in
the oxide is subjected to stress, its chemical potential incorporates
both chemical and mechanical energies, which is also referred to
as chemo-mechanical potential. Considering the stress in the oxide,
this chemo-mechanical potential is expressed in terms of the chem-
ical potential �0, the partial volume ˝,  concentration of oxygen,
and the hydrostatic stress �h as [17,19]:

� = �0 + RT ln c − �h  ̋ (5)

For current stress state in the oxide �h = 2�ox/3. Eq. (5) is consis-
tent with the experimental observation that the chemical potential
increases when the material is under compression and vice versa. It
should be noted that it is the stress gradient along the oxide thick-
ness that will affect oxygen diffusion based on Eqs. (4) and (5).
In other words, uniform stress would not have any influence on
oxidation since it could not change the oxygen chemical potential
gradient.

Diffusivity is another important factor to the diffusion process
according to Eq. (4), which would be modified by the stress in the
oxide as [14,15]:

D = D0 exp

(
˛˝�ox

RT

)
(6)

where D0 is the stress-free diffusivity,  ̨ is a positive dimensionless
coefficient. It can be inferred that the diffusivity would increase
(decrease) when the oxide is under tension (compression) based
on Eq. (6). Therefore, the stress effects on diffusion reflect in two
aspects: the chemo-mechanical potential and the diffusivity.

The stress in the oxide, chemo-mechanical potential and the
modified diffusivity are given by Eqs. (2), (5) and (6), respectively.
With Eqs. (3) and (4), the governing equation for oxygen diffusion
is developed as:

∂c

∂t
= ∂

∂z

{
D0 exp

[
˛˝Moxε0

RT

(
Mox

∫ hox

0
c(z)dz

Moxhox + Ms (H − hox)
− c(z)

)]

×
(

1 + 2Mox˝ε0

3RT
c(z)

)
∂c

∂z

}
(7)

Then the oxidation kinetics can be determined by:

dhox

dt
=  ˇJ (8)

where  ̌ is a coefficient related to substance and reaction [12]. From
the above analysis, the governing equations for diffusion, oxidation
kinetics and stress evolution are presented in Eqs. (7), (8) and (2),
respectively.

Let c̃ = c/c0 (c0 is the oxygen concentration at the oxide outer
surface), z̃ = z/H, h̃  = hox/H, M̃ = Ms/Mox, �1 = ˛˝Moxε0c0/RT,
�2 = 2˝Moxε0c0/3RT, c̃avg =

∫ hox

0
c(z)/c0dz/hox, and 	 = D0t/H2.

Then, the diffusion governing equation can be cast into dimension-
less form:

∂c̃

∂	
= ∂

∂z̃

{
exp

[
�1

(
c̃avg

1 + M̃(1/h̃ − 1)
− c̃

)]
(1 + �2c̃)

∂c̃

∂z̃

}
(9)

where 	 is the non-dimensional oxidation time as defined. Assume
that the oxygen concentration is steady by constant supply of oxy-
gen at the scale outer surface, and no oxygen can cross the interface
into the substrate that means the oxygen flux must cease at the
oxide/substrate surface [19,22,23]. Then the boundary conditions
for the above equation are:{

c̃ = 1, z̃ = 0

J̃ = 0, z̃ = h̃
(10)

where J̃ is the non-dimensional oxygen flux at the oxide
film/substrate interface. The oxide and substrate phases are also
separated by this migrating interface.

In this letter, the governing equation is solved by numerical
method and the material properties and geometry parameters for
simulation are obtained from reference [15,24]. The oxide thick-
ness predicted by the current model is plotted as the solid line in
Figure 2. For comparison purpose, the experimental results by Lak-
shmi et al. [24] are also shown as the triangle symbols. It can be
seen that the model prediction is consistent with the experimental
data during oxidation, and the solid curve is fitted well to parabolic
law.

The dimensionless oxygen concentration distribution across the
oxide thickness at different oxidation time is illustrated in Figure 3.
It shows that the oxygen concentration is highest at the outer sur-
face of the oxide due to the prescribed constant surface supply of
oxygen. On the other hand, there is nearly non-oxygen at the oxide
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