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a  b  s  t  r  a  c  t

Hamiltonian  dielectric  solvent  (HADES)  is  a recent  method  [7,25], which  enables  Hamiltonian  molecular
dynamics  (MD)  simulations  of  peptides  and  proteins  in  dielectric  continua.  Sample  simulations  of an
˛-helical  decapeptide  with  and without  explicit  solvent  demonstrate  the  high  efficiency  of  HADES-MD.
Addressing  the  folding  of this  peptide  by replica  exchange  MD  we  study  the  properties  of  HADES  by com-
paring  melting  curves,  secondary  structure  motifs  and salt bridges  with  explicit  solvent  results.  Despite
the  unoptimized  ad hoc  parametrization  of  HADES,  calculated  reaction  field  energies  correlate  well  with
numerical  grid  solutions  of the  dielectric  Poisson  equation.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A major factor, which limits the conformational sampling of
peptides and proteins by molecular dynamics (MD) simulations,
is the explicit inclusion of the structure determining aqueous sol-
vent. If one describes such solute–solvent systems by standard
all-atom molecular mechanics (MM)  force fields [1–3], then the
solvent atoms typically outnumber the solute atoms by at least an
order of magnitude [4–6]. Therefore, instead of focusing on the
solute–solute and solute–solvent interactions, one has to spend
most of the computational effort on the calculation of the inter-
actions between the water molecules.

A large part of this effort would be saved, if the surround-
ing water could be replaced by a continuum model that needs to
be computationally inexpensive and physically correct. This task
demands the solution of the dielectric Poisson equation (PE) on
the fly with the numerical integration of the protein dynamics
[7]. A corresponding approach neglects, of course, the dielectric
relaxation [8] (femtoseconds to picoseconds) of the water and
its structure near a protein surface. Whereas the former approx-
imation may  be of minor importance for proteins, because their
conformational dynamics proceeds on much slower time scales
(>nanoseconds), the significance of the latter is still unclear [9] and
can be assessed only if a continuum approach, which meets the
above criteria, is available. In this context, complementary informa-
tion from hybrid approaches, which interpolate between an explicit
and a continuum description by using a few layers of explicit sol-
vent, may  be helpful [10].
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There have been many attempts to construct such a continuum
approach for MD  simulations. However, as demonstrated in Ref.
[7], all these attempts essentially represent failures (see also corre-
sponding discussions in Refs. [11–15]). Atomic forces derived from
numerical solutions of the PE [16,17], for instance, do not comply
with Newton’s reaction principle, because they do not yield exact
atomic reaction forces, and, therefore, violate energy conservation.
On the other hand, a free energy functional approach [18], which
actually yields a Hamiltonian dynamics, turned out to be slower
[14] than explicit solvent simulations. Finally, the popular gener-
alized Born methods (see e.g. Refs. [19–21]) do not solve the PE
[7,20,22].

Starting with the reformulation of the PE [15,23,24], which
replaces the polarization of the surrounding continuum by an anti-
polarization within the solute protein, we  recently succeeded [7,25]
to construct a continuum approach for MM-MD  simulations, which
actually meets the above requirements and is called ‘Hamiltonian
dielectric solvent’ (HADES).

Like all continuum methods also the HADES reaction field (RF)
energies and forces, which summarize the interaction of the pro-
tein charges with the continuum, depend on the description of the
effective atomic volumes vi [9,26], which collectively define the
space Vs occupied by the protein and, hence, separate the inte-
rior region characterized by a small dielectric constant εs from
the exterior region characterized by the large dielectric constant
εc of the solvent continuum. Therefore the parameters �i, which,
in HADES, steer the atomic sizes [7], have to be carefully cho-
sen, if one wants to achieve realistic descriptions. In the preceding
works [7,25], however, only an ad hoc parametrization has been
provided. Moreover, the contended computational efficiency has
solely been demonstrated by HADES-MD simulations on a small
dipeptide.
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With this contribution we want to demonstrate that the alleged
computational efficiency pertains also to larger peptides. Further-
more, we want to check to what extent the preliminary ad hoc
choice [7] � of the atomic size parameters �i affects the confor-
mational landscape of such a model system.

As a sample system we chose the ˛-helical decapeptide Ace-
AAAKEAAAKK-NH2, which we call P from now on, because the
melting curve of its CHARMM22/ CMAP [1,27] model has been pre-
viously studied [28] by replica exchange [29,30] (RE) and by replica
exchange with solute tempering [31,32] (REST) MD simulations in
explicit water, which was described by the ‘three point transfer-
able intermolecular potential’ [33] (TIP3P). Note that the chosen
sequence contains four charged residues that can form internal
salt bridges, which may  cause difficulties in continuum approaches
featuring improper descriptions of atomic volumes [9]. Hence,
comparisons of HADES-RE-MD on P with the previous explicit sol-
vent descriptions [28] can indicate to what extent our first choice
� of the volume parameters �i was reasonable.

Whereas standard non-polarizable MM force fields are known to
exhibit distinct conformational preferences [6,34], HADES should
be impartial in this respect. Thus the choice of an ˛-helical model
peptide was solely dictated by the much larger computational effort
required for a statistically meaningful explicit solvent sampling of
ˇ-hairpin folding-unfolding equilibria.

2. HADES continuum electrostatics

In HADES the protein volume Vs is described by the character-
istic function

�(r)  =
{

1, if r ∈ Vs

0, else
(1)

and is decomposed [24] by local characteristic functions ϑi(r) into
atomic volumes vi. The atomic functions ϑi(r) are centered around
the positions ri of the atoms i and obey

∑
iϑi(r) = �(r) for all r. Using

this partition, the PE has been exactly transformed [7] into the new
representation

�˚(r) = −4�

εs

∑
i

[
qiı(r − ri) + 	̂i(r) − ∇ · P̂i(r)

]
. (2)

Here, the atomic partial charges qi, which generate the Coulomb
potential ˚C(r), are clearly separated from the sources 	̂i(r) and
P̂i(r) of the RF potential ˚RF(r), which is the difference between the
solutions ˚(r|εs, εc) of the PE for εs /= εc and εs = εc. The sources
of ˚RF(r) are the atomic shielding charge distributions 	̂i(r) and
antipolarization densities P̂i(r), which are both confined to the
atomic volumes vi. In the representation (2) the usual boundary
conditions imposed to ˚(r) are replaced by the conditions

q̂i = −qi(1 − εs/εc) (3)

for the strengths (volume integrals) q̂i of the 	̂i(r) and by the self-
consistency conditions

p̂i = − viεs

4�

(
1 − εs

εc

)
〈E〉vi (4)

for the strengths p̂i of the P̂i(r), where vi =
∫

ϑi(r)d3r denotes the
atomic volumes and 〈E〉vi = (1/vi)

∫
ϑi(r)[−∇˚(r)]d3r the atomic

field averages.
The exact representation (2) of the PE is not very useful by

itself for computations, because the exact characteristic functions
ϑi(r) are difficult to handle analytically or numerically. However, it
provides an excellent starting point to derive simple and computa-
tionally tractable approximations. Following a previous suggestion
[24] we introduced the Gaussian models ϑ̃i(r | ri, ṽi, �i) for the exact

atomic shape functions ϑi(r). These atomic models are specified
by the approximate volumes ṽi and by the Gaussian widths �i.
Whereas the ṽi are fixed by a self-consistency condition [24], the �i
are the parameters of HADES. The introduction of the ϑ̃i(r | ri, ṽi, �i)
immediately leads to Gaussian approximations 	̃i(r |ri, q̂i, �̂i) and
P̃i(r | ri, p̃i, �i) also for the 	̂i(r) and P̂i(r). Here, the strengths p̃i of
the Gaussian models P̃i(r | ri, p̃i, �i) have to fulfill a self-consistency
condition analogous to Eq. (4), whereas the exact condition (3)
identically applies to the strengths q̂i of the models 	̃i(r |ri, q̂i, �̂i),
whose widths �̂i differ by a factor in the range 1.2 ≤ 
 ≤ 1.6 from the
�i. This factor is another HADES parameter [7].

As a result of the Gaussian approximations, the self-consistent
HADES computation of the approximate RF potential ˜̊ RF(ri) is
essentially analogous to that of a potential, which is generated by
induced dipoles of a polarizable force field [7]. One immediately
obtains an analytically tractable approximation

W̃RF(R) =
∑

i

(qi/2) ˜̊ RF(ri) (5)

for the electrostatic contribution to the solvation free energy, which
enables the derivation [25] of explicit expressions for the atomic RF
forces. Note that these forces obey Newton’s third law and enable
Hamiltonian MD simulations [25].

3. Simulation setups

Issues of computational efficiency were addressed by compar-
ing for the ˛-helical decapeptide P introduced above the timings
of five different MD simulation setups. Three of them employed
our MD package Iphigenie [25,35–37]. The explicit solvent setup
I consisted of the 150 atom peptide P solvated by 1809 TIP3P
water models adding up to a total of N = 5577 atoms enclosed in
a periodic orthorhombic dodecahedron of inner radius Ri = 21.1 Å.
This carefully equilibrated system (temperature T = 300 K, volume
V = 53.1 nm3) was adopted from Reichold [28] and is, together
with his REST-MD and RE-MD simulations on explicitly solvated
P, described in Sections S1 and S2 of the Supporting Information
(SI). The setups II and III applied HADES- and vacuum-MD, respec-
tively, to the thermal motion of P’s 150 atoms. The setups IV and
V used the NAMD program [38], which offers [39] a popular GB
method [40,41]. They applied GB- (IV) and vacuum-MD (V) to P.
All timing simulations were carried out on a single core of a 4 × 16
core 2.5 GHz AMD  Opteron 6274 workstation.

In all simulations P was described by the CHARMM22/CMAP
force field [1,27]. Bond lengths involving hydrogen atoms were con-
strained by the MSHAKE algorithm [42]. In setup I the dynamics was
integrated in the NVT ensemble by the velocity Verlet algorithm
[43,44] with a time step �t  = 1 fs and the solvent was coupled to
a Berendsen thermostat (coupling constant � = 0.5 ps, target tem-
perature T0 = 300 K). The long-range electrostatic and dispersive
interactions were treated by the combination of the fast structure-
adapted multipole method with a RF correction, which is called
SAMM4,1/RF [5,35,37]. In the continuum setups II and IV the dielec-
tric constants were chosen as εc = 80 and εs = 1. In the setups II and III
a Langevin dynamics was applied using a second order integration
algorithm [45] (with T0 = 300 K, � = 1/ps, �t = 1 fs). Related temper-
ature control methods were applied in the NAMD setups IV and
V.

HADES-MD simulations were carried out with the two ad hoc
choices � and �′ for the Gaussian atomic widths �i listed in Table
S2 of the SI. � distinguishes [7] only the four atom types X ∈ {H, O, N,
C}, to which it assigns values �X in the range 0.52–0.87 Å. In �′ the
widths �X of the carboxylate oxygens in E and of the amino hydro-
gens in K are reduced by the factor 0.8 to generate an enhanced
solubility. All other HADES parameters and convergence criteria
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