
Accepted Manuscript

Photon avalanche up conversion in $\mathrm{Ho^{3+}-Yb^{3+}}$ co-doped transparent oxyfluoride glass-ceramics

P. Babu, I.R. Martín, K. Venkata Krishnaiah, Hyo Jin Seo, V. Venkatramu, C.K. Jayasankar, V. Lavín

PII:	\$0009-2614(14)00208-5
DOI:	http://dx.doi.org/10.1016/j.cplett.2014.03.048
Reference:	CPLETT 32039
To appear in:	Chemical Physics Letters
Received Date:	2 January 2014
Accepted Date:	18 March 2014

Please cite this article as: P. Babu, I.R. Martín, K. Venkata Krishnaiah, H.J. Seo, V. Venkatramu, C.K. Jayasankar, V. Lavín, Photon avalanche upconversion in Ho³⁺-Yb³⁺ co-doped transparent oxyfluoride glass-ceramics, *Chemical Physics Letters* (2014), doi: http://dx.doi.org/10.1016/j.cplett.2014.03.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Photon avalanche upconversion in Ho³⁺-Yb³⁺ co-doped transparent oxyfluoride glass-ceramics

P. Babu^{1,*}, I. R. Martín², K. Venkata Krishnaiah³, Hyo Jin Seo^{4,*}, V. Venkatramu⁵, C. K. Jayasankar³, and V. Lavín²

 ¹Department of Physics, Government Degree College, Satyaveedu – 517 588, India
²Departamento de Física Fundamental y Experimental, Electrónica y Sistemas and MALTA Consolider Team, Universidad de la Laguna, E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
³Department of Physics, Sri Venkateswara University, Tirupati-517 502
⁴Department of Physics, Pukyong National University, Busan 608-737, South Korea
⁵Department of Physics, Yogi Vemana University, Kadapa-516 003

Abstract

The Ho³⁺-Yb³⁺ co-doped transparent glass and glass-ceramics containing CaF₂ nanocrystals have been prepared. Differential thermal analysis and X-ray diffraction measurements have been made to characterize thermal properties of glass and structural changes in glass-ceramics, respectively. Photon avalanche upconversion has been achieved by exciting the samples at 745 nm at room temperature. An intense green and a weak red upconverted emissions corresponding to the ${}^{5}S_{2}$: ${}^{5}F_{4} \rightarrow {}^{5}I_{8}$ and ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ transitions, respectively, have been observed. The upconversion intensity has been found to increase with the increase in the size of the fluoride nanocrystals in glass-ceramics. Experimental evidences confirm that the mechanism of upconversion is photon avalanche.

Keywords: Oxyfluoride glasses; Glass-ceramics; Ho³⁺ and Yb³⁺ ions; Upconversion; Photon

* Corresponding authors: drbabu64@gmail.com (P. Babu), hjseo@pknu.ac.kr (Hyo Jin Seo)

avalanche.

Download English Version:

https://daneshyari.com/en/article/5380658

Download Persian Version:

https://daneshyari.com/article/5380658

Daneshyari.com