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a b s t r a c t

To address the dynamics of a Brownian particle on a periodic symmetric substrate under high-frequency
periodic forcing with a vanishing time average, we construct an effective Langevin dynamics by invoking
Kapitza–Landau time window. Our result is then exploited to simulate the mobility both for original and
effective dynamics which are in good agreement with theoretical predictions. This close agreement and
the enhancement of mobility are very robust against the tailoring of amplitude-to-frequency ratio which
substantiates the correctness of our calculation. Present results may be illuminating for understanding
the dynamics of cold atoms in electromagnetic fields.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical study of the dynamics of a particle moving in a rap-
idly oscillating potential (ROP) is a recurrent theme in various con-
texts [1–15]. Well-known paradigms are the Paul trap [3] and
electro- and magneto-dynamic traps [16], neutral atoms [17,18],
billiard traps [19], and rapidly scanning optical tweezers [20].
Many interesting and curious experimental observations stem
out of the interaction of the system with the ROPs. One can stabi-
lize a state, which shows potential instabilities under the absence
of external fields, by a simple application of a rapidly oscillating
field. Such an exercise lends a good degree of control over a system
and opens up possibilities to explore varied vistas of general phys-
ical curiosity. In order to gain some insights that are offered by sys-
tems modulated by rapidly oscillating potentials, a descriptive
theory of their dynamics is not only indispensable but also useful
[21]. Motivated by these facts, in the present Letter, we intend to
investigate the response of mobility of a Brownian particle in the
presence of ROP in conjunction with friction, one of the most
important classes of nonequilibrium systems. The behavior of the
studied system is much more versatile, and partly counterintuitive
effects can occur. Well-studied effects are the absolute negative
mobility [22], stochastic resonance [23], or the rectification of
noise in ratchets and Brownian motors [24,25]. At this juncture,
we want to mention that the invention of experimental techniques

like optical tweezers [20] or the atomic force microscope [26] have
made it possible to exert quickly varying perturbations like forces
on nano-sized objects and thus to experimentally study the pro-
posed effects. Recent years have witnessed intense activity in the
studies of the transport phenomena in the presence of periodic
perturbations [27–31]. Moreover, the Brownian dynamics in the
presence of external perturbation is a very useful tool to model
various challenging and interesting phenomena [32,33].

When the external perturbation varies sufficiently slowly with
time, the system is essentially in equilibrium with the instanta-
neous potential. If that is not the case, the solution to the problem
becomes a lot more difficult because no general methodology is
available, as we have already mentioned. It is this regime that
our work deals with. Here, we plan to investigate the mobility of
a Brownian particle subjected to an external time-oscillatory drive
of zero mean. We calculate the mobility in the parameter regime
where the time scales of the dynamics of the system under study
are much larger than the period of the driving itself. We focus on
the result that this dynamics is equivalent to the one in which
the periodic perturbation is replaced by a time independent effec-
tive potential. This important result has been proposed by Kapitza
and later by Landau and Lifschitz within the framework of classical
mechanics [1,2]. The method of Kapitza–Landau-Lifschitz (KLL) has
been also applied to the stabilization of a matter-wave soliton in
two-dimensional Bose–Einstein condensates without an external
trap [34]. The theory of KLL is based on the separation of the par-
ticle’s motion into a slow and a fast changing part. In their theory,
it was observed that the particle’s real motion is approximately
identified by its slow part, such that the real motion can be
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characterized by replacing its time dependent equation of motion
by the time independent equation of motion of the slow part.
The fast motion results in an effective potential (that has a local
minimum) for the slow motion. As a result, a particle can be
trapped at a minimum of the effective potential, whereas there is
no point of stable equilibrium in an electrostatic field. The impor-
tant result due to KLL has been also derived by Jung [35] through a
Fokker–Planck equation approach [36]. Here, we briefly provide an
alternative derivation of this result through the Langevin dynamics
approach with special reference to the applications we will be
dealing with in this Letter. The variation of the applied field in
space is smooth but otherwise arbitrary. Such type of fields are
usually applied experimentally to cold atoms, where a very high
degree of control is possible. In passing, we also mention that Gom-
mers et al. [37] have investigated the averaged velocity of the
atoms in a nonadiabatically driven optical lattice system subjected
to a phase modulation of the lattice beams. They found that the
resonant activation leads to resonance as a function of driving fre-
quency in the flow of atoms through the periodic potential. They
have also shown that the resonance appears as a result of the intri-
cate interplay between deterministic driving and fluctuations. Fur-
thermore, it has been predicted that by changing the frequency of
driving, it is possible to control the direction of diffusion. It has
been reported in literature that in the presence of nonadiabatic
driving, the lifetime of the particle in the potential well can be sig-
nificantly monitored, an aspect that provides various physically
interesting phenomenon. Also, nonadiabatic driving may result in
a significant enhancement of the activation rate. Brownian motors
have also been realized with nonadiabatically driven Brownian
particles. We would like to mention that the rectification of fluctu-
ations for nonadiabatically driven Brownian particles have already
been demonstrated in previous works [38,39]. Borromeo and
Marchesoni [6] have illustrated that the mobility oscillations
owing to the effect of a high-frequency modulation on the output
of a periodic device is an oscillating function of the amplitude-
to-frequency ratio of the high-frequency drive. In contrast to com-
mon observation based on the linear response theory, they showed
that the effect of high-frequency modulations can control the
response of slow motion.

2. Motion in a high-frequency periodic potential: Model

In this section, the dynamics of a classical particle moving in
one dimension under the influence of a rapidly oscillating force
(i.e., periodic in time) has been studied using the KLL time window
[or multiple scale perturbation theory (MSPT)]. The Brownian par-
ticle (of unit mass) that is driven by a rapidly oscillating external
field (with frequency X) can be modeled by a Langevin equation,

€x ¼ �V 00ðxÞ � c _xþ F þ nðtÞ þ A cosðXtÞ; ð1Þ

where c is the dissipation constant in the Markovian limit, V0ðxÞ is
the confining potential, F is the static force, A and X are the ampli-
tude and the frequency of the external high-frequency impulse,
respectively. Here, nðtÞ is the Langevin force, the statistical proper-
ties of which can be described by hnðtÞi = 0 and
hnðtÞnðt0Þi ¼ 2ckBTdðt � t0Þ where T is the thermal equilibrium tem-
perature and kB is the Boltzmann constant. Derivatives with respect
to coordinate and time of a function f ðx; tÞ here are described by f 0

and _f respectively, while the two overhead dots denote double time
derivative. The assumption of one-dimensional motion for the coor-
dinate x does not detract from the general conclusion discussed
below. Although, whenever the interaction with an environment
affects the dynamics of a system on the time scale on which the
state of a system is focused, components of randomness may influ-
ence the system dynamics giving rise to a stochastic time evolution

[40], and hence, the solution of Eq. (1) with time-dependent poten-
tial is very hard to achieve and is usually attained numerically or by
means of some approximate methods. A distinct time-scale based
separation of the particle’s motion into slow and fast variables is
made feasible, provided the period of external force is small in com-
parison to all other time scales associated with the problem. Such a
separation is a consequence of the fact that the periodic force
changes its sign much more rapidly as compared to the time taken
by the particle to re-assume a new set of coordinates. In the other
word, in a given period, the periodic force has an insignificantly
small contribution to the acceleration. Therefore, the limit of large
frequencies (or small periods) becomes pertinent under such cir-
cumstances and the actual motion of the system then consists of
a rapid motion in proximity to the trajectory of the slow dynamics.

To apply the MSPT solving technique in presence of a general-
ized (coordinate dependent/independent) rapidly oscillating exter-
nal force field, we consider a general form of Eq. (1)

€x ¼ �V 00ðxÞ � c _xþ F þ nðtÞ � V 01ðx;XtÞ; ð2Þ

In order to use the MSPT to solve Eq. (2), we introduce the fast time
variables s ¼ Xt; � ¼ 1=X (where X is the frequency of the fast oscil-
lating field and � is the smallness parameter), so that t ¼ �s and s
can be treated as independent variables. We now consider the fol-
lowing expansion of x:

x ¼
X1
n¼0

�nxnðt; sÞ: ð3Þ

Using the above equation, one can write

d
ds
¼ @

@s
þ � @

@t
; ð4Þ

and Eq. (2) without the Langevin force becomes

d2x
ds2 þ c�

dx
ds
¼ ��2½V 00ðxÞ þ V 01ðx; sÞ� þ F�2: ð5Þ

By exploiting Eq. (4), Eq. (5) can be written as
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¼ ��2½ðV 00ðx0Þ þ V 01ðx0; sÞÞ þ �x1ðV 000ðx0Þ þ V 001ðx0; sÞÞ þ . . .� þ F�2:

ð6Þ

We are now in a position to equate the terms which are of order �
from both sides of Eq. (6). Considering up to sixth order correction,
Eq. (2) can be written as [13–15]

€x0 ¼ �V 0eff ðx0Þ � c _x0 þ F þ nðtÞ; ð7Þ

where the effective potential takes the following form

V 0eff ¼ V 00ðx0Þ þ
1
X2

Z s
ds1V 001ðx0; s1Þ

Z s
ds1V 01ðx0; s1Þ

" #

� c
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ds1V 001ðx0; s1Þ

Z sZ s1
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þ V 0000 ðx0Þ
2X4
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" #
: ð8Þ

We must note that the X�2 and X�3 terms vanish if the external
periodic force is coordinate independent (i.e., only time dependent
external force field.) In this case, we have considered only a time
dependent periodic force. So it is very essential for us to consider
the X�4 or higher order terms to get the effective potential, as the
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