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This Letter investigates the influence, on the molecular absorption of light, of surrounding chromophores.
Two novel rate contributions are identified - one vanishing for a medium with no static dipole moment.
The other, dynamic term is used to model a system of primary absorbers and secondary chromophores
distributed in a host medium. Further modification provides a basis for modelling a case where the

medium is, itself, marginally absorptive, thus accounting for optical losses as the input propagates
through the surrounding host. The results facilitate tailoring of secondary chromophore and host effects
in the pursuit of materials with specific absorption features.
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1. Introduction

It is well-known that the optical properties of atoms and mole-
cules can be influenced by their electronic environment. Local field
effects on spontaneous emission rates within nanostructured
photonic materials for example are familiar, and have been well
summarized [1]. Optical processes, including resonance energy
transfer are similarly dependent on the local environment of
molecular chromophores [2-4]. Many biological systems are
known to contain complex organizations of molecules with
absorption bands shifted due to the electronic influence of other,
nearby optical centres. For instance, in widely studied light-
harvesting complexes, there are two identifiable forms of the
photosynthetic antenna molecule bacteriochlorophyll, with
absorption bands centred on 800 and 850 nm; it has been shown
that the most efficient forms of energy transfer between the two
occurs when there is a neighbouring carotenoid species 5-7. Until
now, research on the broader influence of a neighbouring, off-
resonant, molecule on photon absorption has mostly centred on
the phenomenon of induced circular dichroism, where both
quantum electrodynamic (QED) calculations [8-10] and
experimental procedures [11-13] predict and verify that a chiral
mediator confers the capacity for an achiral acceptor to exhibit
circular differential absorption.

In this Letter, we investigate the influence of one or more
secondary chromophores, to be labelled M, on the absorption of
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light by a primary absorber molecule, A. The secondary species is
assumed to have an electronic energy level that is slightly above
the input photon energy - i.e. its optical absorption is blue-shifted
compared to the primary absorber - to rule out M as a competing
acceptor. It emerges that there is a dynamic contribution to the
absorption rate that can be extended by integrating over all
possible positions and orientations of the mediators, thereby
modelling a continuous medium in which both absorbers and sec-
ondary chromophores are embedded. Further refinement enables
this model to account for a wider range of materials in which, like
the biological materials mentioned above, the primary absorbers
and the secondary species are distributed within a marginally
absorptive host material with its own optical characteristics.
Developing such a theory is shown to provide wider links with
both the molecular and bulk properties of materials.

2. Background theory

Molecular QED is the analytical tool of choice for analysis of the
interactions of light with molecules, and their electromagnetic
interactions with each other [10,14]. Quantizing the whole system
under consideration, particles and fields alike, this formulation of
theory introduces the virtual photon to describe the couplings
between particles of matter [15,16]. Where molecules are not in
direct contact, all intermolecular interactions must be mediated
by virtual photon exchange; ensuring a fully retarded, causal
framework. In such a framework, the non-relativistic Hamiltonian
is promoted to operator form and, for a system comprised of inter-
acting molecules, indexed by ¢, is exactly expressible as:
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where the sum over the discrete index, ¢, denotes the individual
optical centres. Furthermore, the rate, I', of an identified transition
process is given by the Fermi ‘Golden Rule’. For a system proceeding
from initial state i to final state f:

T = 27h™" py My (2)

where f is the reduced Planck’s constant, p; is the density of states,
and Mj is the quantum amplitude for the event. A process consist-
ing of N interactions is described by Nth-order perturbation theory,
such that its quantum amplitude Mg is given by the Nth term of the
perturbation expansion [17]:
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Elementary absorption by individual chromophores generally
entails the annihilation of single photons, and is accordingly repre-
sented by the first order term in Eq. (3). The analysis of optical pro-
cesses involving two or more coupled centres - electronically
distinct in the sense of being separated beyond significant wave-
function overlap - invokes higher order terms; it is these that for-
mally require a QED treatment cast in terms of virtual photon
coupling. Since every discrete molecular transition is a local mat-
ter-radiation interaction event, for each exchange of a virtual pho-
ton there has to be one photon creation and one corresponding
photon annihilation event.

In the following, we first develop in precise QED terms, the
mathematical modelling of photon absorption, and then extend
this analysis to a medium-modified case. In every case the initial
and final system states are given by:

liy = vy ws") In(k,m)); (4)
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where / designates the wavefunction of either the acceptor, A, or
inert mediator, M. Moreover, the subscript of y/ corresponds to
either: the electronic ground state 0, or the excited state o (in the
case of A). The radiation is modelled as a number state of wave-vec-
tor k and polarization label #, with photon population given by n.
Moreover, the photon energy is necessarily such that
E,—Ey=Eyn~ hck.

3. Locally modified absorption

The probability amplitude for the process of photon absorption,
modified by the presence of a secondary chromophore is given by
the sum of three terms:

My = M + M™ + MY, (6)

where M is the amplitude for absorption by the acceptor mole-
cule, A, alone the second term, M< A corresponds to the mediator
molecule absorbing a photon and then transferring the energy to
the acceptor molecule, and My denotes the absorption of a pho-
ton by A, which then interacts with M. Each of the three possible
configurations is represented diagrammatically in Figure 1.

According to the Feynman prescription, the contributions to the
matrix element are terms corresponding to all topologically
distinct Feynman diagrams, examples of which are displayed in
Figure 2 [18]. We determine the rate from the Fermi rule, equation
(2), which now depends on the square modulus of Eq. (6):
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Figure 1. Diagrams (a), (b) and (c) represent the A, AM and MA absorption
configurations respectively. The input photon is labelled with wave-vector k and
polarization #: (K,n’) represents the mode of a virtual photon mediator between
molecular centres. All diagrams represent A and M in arbitrary positions relative to
each other.
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Figure 2. Example Feynman diagrams for the medium-independent (a), static (b),
and dynamic (c) absorption events described by first- and third-order perturbation
theory. The molecular virtual intermediate state is labelled r.
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in which numbering has been introduced so that terms may be
tackled individually. The leading order term is term (1), which
corresponds to absorption in the absence of the mediator. The terms
(2) and (3) are obtained from third-order perturbation theory, and
are therefore small in comparison to term (1), which, implies
that term (6) is also small. Thus, the first correction terms to the
absorption rate are terms (4) and (5).

3.1. Medium-independent absorption

Firstly, we calculate the leading order term, where no other
molecule is involved. In the electric dipole approximation, the
interaction Hamiltonian is given by Hj, = —salu-d{ with the
transverse electric field given by:
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where V is the quantization volume, while e (k)and a (k) are the
polarization vector and photon annihilation operator respectively
for a mode with polarization # and wave-vector k. The right-most
term in Eq. (8) is the Hermitian conjugate of the term on the left,
with a'® (k)defined as the photon creation operator. Thus, we have:
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where r, is the position vector of the acceptor molecule. We assume
the wavefunctions are real. The square modulus of the above - term
(1) from Eq. (7) - is:
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