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a b s t r a c t

We have derived an equation, based on Helfrich’s curvature elasticity, describing the equilibrium shape of
membrane vesicles in the presence of magnetic fields. We have solved this equation with and without the
constraint of constant vesicle area. For vesicles with constant area, an exact calculation using our model
confirms Helfrich’s estimate (Helfrich, 1973) [20] and predicts a magnetic field induced surface tension.
Without the constant area constraint, our model predicts that vesicles with positive diamagnetic suscep-
tibility anisotropy will swell in magnetic fields. It also predicts the anharmonic magnetic deformation of
self-assembled nanocapsules of bola-amphiphilic molecules and the linear birefringence observed by
Manyuhina et al. (2007) [22] .

� 2013 Elsevier B.V. All rights reserved.

Helfrich’s spontaneous curvature model [1] has been used for
four decades to study the equilibrium shapes and deformations
of lipid bilayer vesicles. The model has been used to predict the
biconcave discoid shape of red blood cells [2,3] and is well ac-
cepted in biophysics [4]. His curvature elasticity model has been
extended to investigate shapes in soft matter, such as the helical
structures in carbon nanotubes [5] and in bile ribbons [6], cylindri-
cal structures in the smectic-A phase [7] and in peptide nanotubes
[8], the circle-domain instability in lipid monolayers [9] and icosa-
hedral structures in virus capsids [10].

Among the many fruitful applications of the Helfrich model,
vesicle deformation by external forces (such as by pressure [11–
13], capillary forces [14,15] and electric fields [16–19]) has perhaps
attracted the most interest. Vesicle deformation by magnetic fields
was predicted more than three decades ago by Helfrich [20], how-
ever the experimental study has only been recently initiated
[21,22]. Helfrich considered infinitesimal deformations of a spher-
ical vesicle of radius r ¼ r0 by a spatially uniform magnetic fieldH
by minimizing the sum of bending energy [1] (curvature elastic en-
ergy) and the free energy of interaction between the magnetic field
and the constituent molecules [23];

F ¼ Fb þ FH ¼
1
2
j
I

c1 þ c2 � c0ð Þ2dA� 1
2

Dvt
I
H � nð Þ2dA; ð1Þ

here j is the bend modulus, c1and c2 are the principal curvatures, c0

is the spontaneous curvature, and n is the outward unit normal. The
principal values of the diamagnetic susceptibily are v== and v? par-

allel and perpendicular to n, and the susceptibility anisotropy is
Dv ¼ v== � v? and t is the membrane thickness. From Eq. (1), we
deduce that a spherical vesicle with Dv > 0 deforms into an oblate
vesicle with rotational symmetry about H. By using a spherical
coordinate system centered on the vesicle with z alongH and keep-
ing the vesicle surface area constant, Helfrich found that the vesicle
shape was given by r ¼ r0 þ a20Y20ðh;/Þ, where Ylm is a spherical
harmonic and

a20 ¼ �ar3
0DvtH2=j ð2Þ

where a ¼
ffiffiffiffi
4p
5

q
=18 for c0 ¼ 0 and a ¼

ffiffiffiffi
4p
5

q
=12 for c0r0 ¼ 2

[20,24]. Helfrich also suggested that the predicted deformation
could be experimentally accessed through the field-induced bire-
fringence of a suspension of identical vesicles, since the normalised
birefringence (last Eq. in [20] and Eq. (4) in [22]) is

Dn=Dnmax ’ ðrðh ¼ p
2Þ � rðh ¼ 0ÞÞ=R ¼ ð� 3

2Þ
ffiffiffiffi
5

4p

q
ða20=r0Þ / H2=j,

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A=4p

p
, and A is the surface area of the vesicle. By

measuring the birefringence of a system of self-assembled vesicles
of bola-amphiphilic sexithiophene molecules, Manyuhina et al.
[22], found that the predicted quadratic dependence of the normal-
ized birefringence on H is well obeyed at low fields, but at higher
fields, the bending rigidity j is enhanced, and hence the observed
birefringence has a weaker H dependence (Fig. 2 in [22]).

To explain this, Manyuhina et al. modified the Helfrich bending
energy and included a fourth-order curvature term [22,25]. By
fitting the data, using three additional parameters in their model
(Eq. (7) in [22]), good agreement with experiment was found.
We suggest, however, that agreement with experiment may be
found without modifying Helfrich’s bending energy.
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In this Letter, we derive a geometric equation for the equilib-
rium shape of membrane vesicles in a magnetic fields using Helf-
rich’s curvature elasticity model. The general solution describes
infinitesimal deformations of a spherical vesicle in a magnetic field.
The solution for vesicles with constant area confirms Helfrich’s re-
sult [20] that the change of radius is quadratic in field strength and
also predicts a field-dependent surface tension. The solution for
variable vesicle area predicts field-induced swelling of vesicles
with positive diamagnetic anisotropy and satisfactorily explains
the anharmonic magnetic deformation of self-assembled nanocap-
sules evidenced by the linear birefringence meaured by Manyuhina
et al. [22]. As in Ref. [22], we use the term anharmonic to describe
deformations whose result on the birefringence is subquadratic in
H.

For the complete theory, the free energy (1) has to be extended
by two additional terms [12];

F ¼ Fb þ FH þ Dp
Z

dV þ k
I

dA; ð3Þ

where Dp and k are Lagrange multipliers to ensure constant volume
and area, or, alternately, the pressure jump across the membrane
(i.e. Dp ¼ p0 � pi) and the membrane tension, respectively.
Although this free energy was minimised in Ref. [20] with the con-
straint of constant area, the effects of Dp and k were not analysed
thoroughly. Here we derive a more complete formula for Eq. (2);
the details are given below. To obtain a description of the deforma-
tion, we solve the variational equation dF ¼ 0. For
H ¼ 0; dFH¼0 ¼ 0 takes the form [12]

Dp� 2kH þ jð2H þ c0Þð2H2 � 2K � c0HÞ þ 2jr2H ¼ 0; ð4Þ

where H ¼ � 1
2 ðc1 þ c2Þ and K ¼ c1c2 are the mean curvature and

Gaussian curvature, respectively, the equilibrium vesicle surface is
specified by the position vector Yðu; vÞ where u and v are surface
parameters, and r2 is the Laplace–Beltrami operator defined as
r2 ¼ ð1= ffiffiffi

g
p Þ@iðgij ffiffiffi

g
p

@jÞ. Here @1 ¼ @u; @2 ¼ @v ; and
gij ¼ ðgijÞ

�1
; g ¼ detðgijÞ, and gij ¼ @ iY � @jY are the coefficients of

the first fundamental form of the surface.
As in Ref. [20], we consider the case where the vesicles are

spherical in the absence of a magnetic field. In this case, the radius
of these spherical vesicles is given by

Dpr3
0 þ 2kr2

0 � jc0r0ð2� c0r0Þ ¼ 0: ð5Þ

For H – 0, our main interest is the calculation of dFH. Assuming the
surface Y to be slightly distorted according to

Y0 ¼ Y þ wðu;vÞn ð6Þ

with wðu;vÞ being a smooth infinitesimal function, we have

dFH ¼ �
1
2

Dvt
I
ðn � HÞ2ddAþ 2

I
ðn � HÞH � dndA

� �
: ð7Þ

In prior letter, we showed that ddA ¼ �2HwdA (Eq. (18) in [12b])
and dn ¼ �rw (Eq. 3.26) in [26]) with

rw ¼ gijYi@jw ð8Þ

where Yi ¼ @iY. Inserting these into Eq. (7) gives

dFH ¼ Dvt
I
ðH � nÞ2Hwþ ðH � nÞH � rw
h i

dA: ð9Þ

We next integraterw by parts. Using results from Ref.[27] (Eq. (17)
on p. 232 and setting U ¼ ðH � nÞH), we haveI
ðH � nÞH � rwdA ¼

I
r � ðwðH � nÞHÞ � wr � ðHðH � nÞÞ½ �dA:

ð10Þ

By using the divergence theorem for surfaces ([27], pp. 238,239), we
haveI
r � ðwðH � nÞHÞdA ¼

I
�2ðH � nÞ2Hw
h i

dA: ð11Þ

Substituting Eqs. (10) and (11) into Eq. (9) gives

dFH ¼ �Dvt
I

HðH � nÞ2 þr � ðHðH � nÞÞ
h i

wdA: ð12Þ

Setting dF ¼ dðFH ¼ 0 þ FHÞ ¼ 0 for any infinitesimal function w
and using Eq. (4) and (12) gives a new form of the shape equation

Dp� 2kH þ jð2H þ c0Þð2H2 � 2K � c0HÞ þ 2jr2H

¼ Dvt ðH � nÞ2H þr � ðHðH � nÞÞ
h i

: ð13Þ

In the above derivation, we did not assume H to be spatially
uniform, hence the shape equation in Eq. (13) is valid for any mag-
netic field, H ¼ Hðu;vÞ. It should be noted that Eq. (13) may also
be useful for studying vesicle deformation by an electric field, even
an AC electric field at sufficiently high frequencies. According to
Helfrich’s theory [28], above a threshold frequency (in the so-
called dielectric regime) the orientation dependent electric contri-
bution to the free energy in an AC electric field EðxÞ has the form
� 1

2 D�t
H
ðE � nÞ2dA where the principal values of the dielectric per-

mittivity are �== and �? parallel and perpendicular to n, and the
dielectric anisotropy is D� ¼ ð�== � �?Þ. The vesicle shape equa-
tion for AC electric fields at sufficiently high frequencies thus has
the same form as Eq. (13).

We now discuss the derivation of the result of Eq. (2) in light of
Eq. (13). As assumed in [20], at H ¼ 0 the vesicle is a sphere, and
we use u ¼ h;v ¼ /;Y ¼ r0ðcos / sin h; sin / cos h; cos hÞ and
n ¼ r�1

0 Y. For H– 0, we consider the solution of Eq. (13) of the
form Y0 ¼ Y þ wðu;vÞn, as in Eq. (6). wðh;/Þ again describes weak
deformations of the radius at ðh;/Þ, i.e. r ¼ r0 þ wðh;/Þ with

w ¼
X
l;m

almYlmðh;/Þ: ð14Þ

Here we do not set a20 – 0 a priori, but obtain it from the shape
equation Eq. (13). We note that the Lagrange multiplier k in Eq.
(5), changes to kþ dkðHÞfor H – 0 to ensure constant area. The
general relations

dH ¼ ð2H2 � KÞwþ 1
2
r2w; ð15Þ

dK ¼ 2HKwþr2w; ð16Þ

are given in Ref. [12b] (Eq. (16)) and in Ref. [29] (Eq. (6)); here

r2 ¼ ð1= ffiffiffi
g
p Þ@iðKLij ffiffiffi

g
p

@jÞ, Lij ¼ ðLijÞ�1, and Lij are coefficients of the
second fundamental form of the surface, defined as Lij ¼ n � @ i@jY.
For a sphere of radius r0, we have H ¼ �r�1

0 ;K ¼ r�2
0 , and

ð�1=r0Þr2 ¼ r2 ¼ 1
r2

0 sin h

� �
@hðsin h@hÞ þ

1
r0 sin h

� �2

@2
/; ð17Þ

so r2 is the usual Laplace operator on the sphere with
r2Ylm ¼ �lðlþ 1ÞYlm=r2

0. Using the first-order approximation and
substituting Eqs. (5), (14)–(17) and H ¼ H0ð0;0;1Þ into Eq. (13)
leads to

2r�1
0 dkþ jr�4

0

X
l;m

�2kr2
0

j
þ 4y� y2

� �
þ 1

2
y2 � 4y� 4
� �

lðlþ 1Þ
�

þl2ðlþ 1Þ2
�

almYlm ¼ DvtH2
0r�1

0
1
3

1� 4

ffiffiffiffiffiffiffi
4p
5

r
Y20

 !
ð18Þ
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