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a b s t r a c t

The system of ordinary differential equations for the method of the gentlest ascent dynamics (GAD) has
been derived which was previously proposed [W. E and X. Zhou, Nonlinearity 24, 1831 (2011)]. For this
purpose we use diverse projection operators to a given initial direction. Using simple examples we
explain the two possibilities of a GAD curve: it can directly find the transition state by a gentlest ascent,
or it can go the roundabout way over a turning point and then find the transition state going downhill
along its ridge. An outlook to generalised formulas for higher order saddle-points is added.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concepts of the potential energy surface (PES) [1,2] and of
the chemical reaction path are the basis for the theories of chemi-
cal dynamics. The PES is a continuous function with respect to the
coordinates of the nuclei. It is an N-dimensional hypersurface if
N = 3n and n is the number of atoms. It must have continuous
derivatives up to a certain order.

The PES can be seen as formally divided in catchments associ-
ated with local minima [1,3]. The first order saddle points or tran-
sition states (TSs) are located at the deepest points of the boundary
of the basins. Two neighbouring minima of the PES can be con-
nected through a TS via a continuous curve in the N-dimensional
coordinate space. The curve characterises a reaction path. One
can define many types of curves satisfying the above requirement.
The reaction path model widely used is the steepest descent (SD).

There exist a large number of proposed methods that in princi-
ple reach a TS when the minimums associated to the reactant and
product are known. See Ref. [4] and references therein. There are
also methods that find the TS when only one minimum is known.
In this case, the problem is much more cumbersome because the
initial data are just the geometry coordinates of the minimum,
however, the direction of the search is open. As in the first case
many algorithms have been developed for this type of problem
[4]. A great number of these algorithms are based in a generalisa-

tion of the Levenberg–Marquardt method [5–7] that basically con-
sists of a modification of the Hessian matrix to achieve both, first
the correct spectra of the desired Hessian at the stationary point,
and second to control the length of the displacement during the
location process. The first proposed algorithm within this philoso-
phy is due to Scheraga [8] and from than up to now the list is very
large [9–20]. None of the methods are foolproof, each of them has
some problems. Recently E and Zhou [20] have proposed an ap-
proach called the ‘gentlest ascent dynamics’ method. This method
can be seen as a new reformulation of the method proposed some
time ago by Smith [12,13] under the name ‘image function’. The
method is based on the generation of an image function that is a
function which has its minima at exactly the points where the ori-
ginal PES has its TSs and moreover by an application of a minimum
search algorithm to this image function. The converged point
should correspond to a TS in the actual PES. Helgaker [14] modified
the algorithm by the trust radius technique. Sun and Ruedenberg
[21] analysed the method concluding that image functions do not
exist for general PES so that a plain minimum search is inappropri-
ate for them. A nonconservative field gradient of the image func-
tion exists. The global structure of the image gradient fields is
considerably more complex than that of gradient fields of the ori-
ginal function. However, the image gradient fields appear to have
considerably larger catchment basins around TSs. Besalú and Bofill
[18] showed that the Smith algorithm is a special type of the
Levenberg–Marquardt method.

In this Letter we show the connection between the Smith meth-
od [12,13] and that described by E and Zhou [20] to find TSs, and
additionally, the mathematical basis of this algorithm is discussed.
Finally, some examples are reported.
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2. Background of the method

Let us denote by V(q) the PES function and by qT = (q1, . . ., qN)
the coordinates. The dimension of the q vector is N. The superscript
T means transposition. At every interesting point q the PES func-
tion admits a local gradient vector, g(q) =rqV(q), and a Hessian
matrix, H(q) =rqrq

TV(q). The family of image functions of V(q), la-
belled by W(q), is defined by the differential equation [21]

fðqÞ ¼ UvgðqÞ ¼ I� 2
vðqÞvTðqÞ
vTðqÞvðqÞ

� �
gðqÞ ð1Þ

where f(q) is the image gradient vector, Uv is the Householder
orthogonal matrix constructed by an arbitrary vector v(q) being in
principle a function of q, and I is the unit matrix. The Householder
orthogonal matrix is a reflection at v(q). It has the property that
Uv = Uv

T, and it is the result of the difference between the projectors
(I � Pv) and Pv, because it holds trivially Uv = I � 2Pv = (I � Pv) � Pv,
being Pv the projector that projects into the subspace spanned by
the v-vector [22]. If the derivatives of v(q) with respect to q are non-
vanishing, the image Hessian matrix, F(q) = UvH(q), is not obtained
by the differentiation of f(q). Taking into account Eq. (1), this differ-
entiation results in

rqfTðqÞ ¼ rqðgTðqÞUvÞ ¼ FTðqÞ þ gTðqÞrqUv

¼ FTðqÞ � 2gTðqÞrq
vðqÞvTðqÞ
vTðqÞvðqÞ

� �
: ð2Þ

The term in brackets is usually not zero and not symmetric, and
this non-symmetry is due to the effect of the differentiation on the
Pv projector. In other words,

rqfTðqÞ
� �

ij
� rqfTðqÞ
� �

ji
¼ rqfTðqÞ
� �

ij

� rqfTðqÞ
� �T

ij
–0 i–j: ð3Þ

The inequality of Eq. (3) implies that the image gradient field
defined by Eq. (1) is not integrable to an ‘image PES’ W(q). More
explicitly,

Wðq1Þ �Wðq0Þ–
Z t1

t0

fTðqÞðdq=dtÞdt ð4Þ

where dq/dt is the tangent of an arbitrary curve joining the points
q0 = q(t0) and q1 = q(t1). Due to Eq. (3), this gradient field vector
should be considered as a nonconservative force field. From this fact
it follows an image of the PES function does, in general, not exist
[21,23].

From Eq. (3) it is easy to see that at the stationary points, where
g(q) = 0, the inequality is transformed to an equality if the v-vector
is an eigenvector of the Hessian matrix. Note that if {h, v/(vTv)1/2} is
an eigenpair of the H(q) matrix, then F(q) = UvH(q) = (I – 2vvT/
(vTv)) H(q) = H(q) - 2vvT/(vTv) h = H(q) - h 2vvT/(vTv) = H(q) -
H(q) 2vvT/(vTv) = H(q) (I – 2vvT/(vTv)) = H(q)Uv = FT(q). As pointed
out by Sun and Ruedenberg [21], the image functions do exist until
the second order in the vicinity of its stationary points for any PES
taking v as an eigenvector of the Hessian matrix. Due to this fact
the SD curves of the quadratic image function are approximations
to the gradient image curves of W(q) being the image potential of
V(q).

With the previous analysis of the general nonexistence of an
image PES, we can take the image gradient field given in Eq. (1)
to define the field of SD curves as,

dq
dt
¼ �fðqÞ ¼ �UvgðqÞ ¼ �½ðI� PvÞ � Pv �gðqÞ ð5Þ

where t is the parameter that characterises the SD curve, q(t). If Eq.
(5) is multiplied consecutively from the left by the set of (N-1) linear

independent orthogonal vectors to the v-vector, we see that it cor-
responds to a curve which is energy descending along this set of
directions on the actual PES, whereas is ascending on the v-vector
direction. This property makes the set of curves defined in Eq. (5)
suitable for the location of a TS from a minimum. This observation
is supported by the fact that Eq. (5) can be rewritten as

dq
dt
¼ �½ðI� PvÞ � Pv �gðqÞ ¼ �ðI� PvÞgðqÞ þ PvgðqÞ

¼ �ðI� PvÞgðqÞ þ l
v

ðvTvÞ1=2 ð6Þ

being l = vTg(q)/(vTv)1/2, where the definition of Pv has been used.
Eq. (6) is the basic equation of the string method proposed for the
location of reaction paths and TSs [24]. The v-vector in this method
is the current tangent of the path. Because we are interested to find
TSs from minimums of the PES we can use the nonconservative
property of the gradient image field to modify the v-vector, during
the location process. For this purpose, we first consider that at the
minimum, as well as at the TS, the last term of the right hand side
part of Eq. (2) is equal zero due to g(q) = 0. Second, at the TS, the
Hessian matrix, H(q), possesses only one eigenpair with negative
eigenvalue. The associated Raygleigh-Ritz quotient of this eigenpair
with a negative eigenvalue is the lowest that the Hessian matrix can
achieve at this point being equal to the corresponding eigenvalue
[25]. The Raygleigh-Ritz quotient for a given vector v and matrix
H is defined as, k(v) = vTHv/(vTv). The structure of this eigenvector
is unknown. To find the TS one should, however, ensure that during
the research process the path walks through the PES (given until
second order) such that the character of the surface becomes closer
to a first order saddle point. Taking into account these two consid-
erations we transform Eq. (3) imposing that g(q) = 0 at each point of
the search and multiplying the resulting equation from the left by (I
– Pv) and from the right by Pv,

1
2
ðI� PvÞ rqfTðqÞ

� �
� rqfTðqÞ
� �T

� �
Pv

����
gðqÞ¼0

¼ 1
2
ðI� PvÞ½HðqÞUv � UvHðqÞ�Pv ¼ �ðI� PvÞHðqÞPv: ð7Þ

The effect of this multiplication by the projectors, (I-Pv) and Pv,
is that the resulting Eq. (7), multiplied from the right by the v-vec-
tor, is the gradient of the Rayleigh–Ritz quotient with respect to
this vector. If the v-vector is an eigenvector of the H(q) matrix then
the right hand side part of Eq. (7) is equal zero because every
eigenvector extremises the corresponding Rayleigh–Ritz quotient.
We will denote the Rayleigh–Ritz quotient by kq(v) to indicate its
dependence on q through the Hessian matrix. If a v-vector makes
the gradient of the Rayleigh–Ritz quotient equal zero then this vec-
tor is an eigenvector of the H(q) matrix and the value of the Ray-
leigh–Ritz quotient coincides with the corresponding eigenvalue
of the H(q) matrix. These properties suggest that a v-vector can
be changed following the SD direction of the Rayleigh–Ritz quo-
tient gradient with respect to v,

dv
dt
¼ �vTv

2
rvkqðvÞ ¼ �ðI� PvÞHðqÞPvv ð8Þ

Eq. (8) is also a function of q through the Hessian matrix. The
Rayleigh–Ritz quotient of the new v-vector obtained from,
v ? v + dv/dt Dt, will be lower with respect to the previous one
and, in addition, Eq. (5) will give us a new energy ascent direction
and a set of orthogonal N-1 energy descent directions. Eq. (8)
searches for either the lowest positive or the single negative Ray-
leigh–Ritz quotient if it exists, whereas Eq. (5) determines points
on the PES along the action of an increase of the energy in the v-
vector, and a decrease along the set of orthogonal directions to this
vector. The specific action of Eq. (5) defines the type of points of the
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