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Optical fluctuation microscopy based on calculating local entropy values
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a b s t r a c t

We demonstrate a novel and easy-to-use method to dramatically reduce noise and background contribu-
tions in advanced fluorescence microscopy experiments. The underlying idea is that the entropy value
increases for systems with a large number of accessible energy states. Intensity fluctuations originating
from photophysical or photochemical effects lead to an increased information content. Calculating the
pixel-wise entropy value results in an enhancement of the signal-to-noise ratio by a factor of 90–100.
Comparing ECI (entropy-based contrast-enhanced imaging) to superresolution methods such as STORM
and SOFI, we find that this technique also bears substantial potential for enhancing fluctuation-based
superresolution microscopies.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In fluorescence microscopy one of the most widely encountered
problems is poor contrast or poor signal-to-noise ratios (SNR)
where the SNR is defined as SNR ¼ Isignal

Inoise
. Poor SNRs might prevent

one from distinguishing fluorescence signals from autofluorescent
background or inelastically scattered light. Here, we define ‘noise’
as any signal which does not originate from the sample, including
electronic shot-noise and background fluorescence (such as out-of-
focus contributions). In order to overcome poor SNR values, one
typically has to find ways to remove or minimize noise from the
images, which typically requires changes in experimental condi-
tions by experimenting with different substrates, or choosing fluo-
rophores with different spectral properties. Image processing
steps, such as applying thresholding methods can also be utilized
without losing relevant information. A common thresholding algo-
rithm is based on multi – or bimodal histogram-formation of all
pixels to obtain two separate mean values. One value corresponds
to the average intensity of the noise, while the other value repre-
sents the mean signal intensity. Therefore, a clear separation be-
tween the two is possible by setting the threshold to a value
above the noise level. Another straightforward method for noise
reduction is a simple mean filter. This algorithm relies on averag-
ing the values of two (or more) neighboring pixels to increase
the overall SNR. This typically results in a blurred, but noise-re-
duced image. Based on this method, a GAUSSIAN blur algorithm can

also be applied where the input image is convolved with a GAUSSIAN

function leading to an overall smoothed image. A more recent algo-
rithm for noise reduction in image processing was published by
Ooi et al. [1], who describe the Toboggan method which is also
based on GAUSSIAN filtering. In essence, this method receives the
GAUSSIAN-smoothed images as input data and groups the pixels
according to their local gradient magnitude. Pixels from the same
group are then all assigned the same intensity value. Other, more
advanced techniques make use of spatial averaging together with
temporal information and utilize adaptive algorithms in order to
retain the high spatial resolution [2-4]).

The more widespread, common noise-reduction techniques
using averaging filters tend to be very simple and inefficient result-
ing in less than desirable outcomes, while the more sophisticated
ones techniques tend to be computationally very expensive. Here,
we present a method that makes use of the different statistical nat-
ure of signal and noise to remove noise from images and improve
SNRs. Our method is based on the symmetry information con-
tained in intensity distributions of time-dependent signals. The de-
gree of intensity fluctuations is measured by evaluating the
entropy information contained in the pixel time traces of frames
acquired as part of many-frame fluorescence microscopy movie
files to distinguish fluorescent molecules from noise.

2. Methods

To enhance the contrast in fluorescence microscopy images we
developed a method based on thermodynamics and information
theory considerations [5]. After acquiring a rapid sequence of images
(i.e., a movie) of fluorophores exhibiting random, time-dependent
fluorescence fluctuations (as used e.g. in super-resolution micros-
copies [6-9] as implemented in the STORM/PALM or SOFI methods
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[10-18], the final contrast-enhanced image will be reconstructed
using the entropy information as new pixel values. Every new image
pixel value is calculated using the Shannon-definition of entropy

H0 ¼
Xn

i¼1

pi � IðpiÞ ¼ �
Xn

i¼1

pi � log10ðpiÞ ð1Þ

which is the expectation value of the information content of a time-
dependent series defined as

IðpÞ ¼ �log10ðpÞ; ð2Þ

where p is the probability (or the relative number) of a specific
intensity value to occur in this time-dependent signal. Practically
speaking, all intensity values are binned and their relative fre-
quency is calculated, leading to a histogram of the probability for
any intensity value. A schematical representation of this procedure
is depicted in Figure 1. Here we would like to point out that this en-
tropy-based method does not necessarily require a time-dependent
and continuous signal as input data to operate. However, all data
points of the series represent independent snapshots of energetic
states of a given thermodynamic system. Using the entropy values,
in principle, any set of equations that deals with energy consider-
ations can potentially be beneficial to improve our method further.
Analyzing data with the algorithm described here is fairly straight-
forward. As a first step, data acquisition is achieved by imaging a
fluorescent sample using a standard inverted widefield microscope
and saving the data as an image sequence. Subsequently, the regis-
tered intensities will be binned using a constant bin width along the
time axis and the relative number of the intensity values is calcu-
lated to estimate the probability of this value’s occurrence. As a last
step the entropy is calculated pixel wise according to Eq. (1) or if the
degree of denoising needs to be set, Eq. (3) has to be applied. Since
only one sum has to be computed the image can be reconstructed in
linear time depending on the bit depth of the input image sequence
and therefore the maximum intensity of the current pixel trace.

The basic idea of entropy-based contrast-enhanced imaging
(ECI) is the fact that the number of thermodynamically accessible
states of a given system increases with higher entropy values. In
this interpretation the greater the number of different intensity
values are which are registered in a pixel, the higher is its entropy.
Every photophysical process that generates time-dependent inten-
sity fluctuations and thus a broad distribution of intensity values
results in high entropy values. As the number of sources leading
to intensity fluctuations is much higher than the sources for noise
(with constant mean), the resulting entropy values originating
from a fluctuating emitter are high and can easily be discriminated
from noise. In principle this method is not shot-noise limited. Im-
age sequences containing only camera/detector noise are recon-
structed as black ECI images.

Semiconductor nanocrystals or quantum dots as fluorescent
probes exhibit blinking on all time scales which turns them into

ideal fluorescent probes for ECI applications [19,20]. The large
number of different intensity values for qdots leads to a broad dis-
tribution and thus to a large standard deviation of the underlying
distribution. We can use higher order powers of the empirical stan-
dard deviation

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t � 1

Xt

i¼1

ðIi ��IÞ2
vuut

as an entropy weighting factor, where t is the number of frames ac-
quired, Ii the current pixel intensity value and �I the average pixel
intensity of the particular pixel trace. One can then define the de-
gree (or: order) of denoising and thus the SNR improvement by
modifying expression (1) to

HðnÞ ¼ H0 � sn
k;j ð3Þ

where k and j denote the coordinates of the current pixel trace
being processed.

The computational effort (Figure S1) to reconstruct an ECI im-
age basically scales linearly with the bit depth of the original image
stack and the bin width according to the histogramming step of the
ECI algorithm. The number of iterations can be drastically de-
creased with an increased bin width due to a decreasing number
of bins. For a constant bit depth (and a constant number of bins)
the time to reconstruct one pixel in the ECI image is almost inde-
pendent of the ECI order and thus constant.

3. Results and discussion

To characterize the capabilities of ECI we first performed ECI
analyses of simulations of images containing intensity-fluctuating
molecules. The point spread function of the simulated molecules
is represented by a 2D GAUSSIAN density function

I2Dðx; yÞ ¼ I0 � exp � ðx� x0Þ2

2s2
x
þ ðy� y0Þ

2

2s2
y

 ! !
ð4Þ

where I0 is the maximum intensity at position x0; y0 in the image. sx

and sy denote the standard deviations (which are proportional to
the FWHM) in the x and y direction. For all simulations we assumed
that sx ¼ sy. The simulated data was generated and analyzed using
custom-written code (C++, Code::Blocks IDE Ver. 10.05) including
the freely available image library CImg for image data processing.
For all simulations we additionally added Poissonian noise

PLðkÞ ¼
kL

k!
e�L

according to the statistical nature of light, where k is an integer and
L denotes the expectation value and the variance of the distribution.

Figure 1. Demonstration of the ECI scheme. Calculation of the intensity probabilities by histogramming and subsequent pixel-wise computation of the Shannon entropy
value to reconstruct the SNR-enhanced image.
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