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We provide a unified description of the Fermi operator expansion and recursion methods within the tech-
nique of spectral quadrature. Through rigorous error estimates, we prove that this approach is linear-
scaling, stable and exponentially convergent. We use this analysis to determine the influence of smearing,
band-gap, position of Fermi energy, and spectral width of the Hamiltonian on the convergence rates

obtained in practical calculations. Additionally, we establish that super-geometric convergence can be
achieved when the erfc function is used for smearing. We validate the spectral quadrature method and
the accuracy of our analysis by means of selected examples.
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1. Introduction

Formulations of Density Functional Theory (DFT) which solve
for the orbitals have an O(N?) scaling with respect to the number
of atoms [1,2]. To overcome this restrictive scaling, there has been
great emphasis on the development of O(N) methods [3,4]. One
such technique is the Fermi operator expansion (FOE), where the
density matrix is expanded in terms of polynomials [5-7]. Such
an expansion can be achieved particularly efficiently through the
purification method [8-16]. Another related approach is the recur-
sion method developed by Haydock et al. [17-19]. In this method,
the projected density of states (PDOS) is determined through a
continued fraction representation, and the quantities of interest
are then obtained by integration over it.

A variant of the recursion method was proposed by Nex [20],
where instead of calculating the PDOS, the integrals over it are di-
rectly evaluated via Gauss quadrature. An improved algorithm for
the calculation of the Gauss quadrature nodes and weights was
presented by Bai et al. [21], wherein they focussed on the calcula-
tion of the partial eigenvalue sum i.e. band structure energy. How-
ever, because of the expense associated with generating the Gauss
quadrature rules, they proposed the use of a Monte-Carlo simula-
tion technique to approximate the band structure energy. Recently,
Suryanarayana et al. [22] utilized the Gauss quadrature technique
to coarse-grain DFT, whereby the computational effort to study
crystal defects is significantly reduced. Henceforth, we shall refer
to the recursion method and its variants mentioned above as the
Gauss spectral quadrature method.

In this letter, we analyze the class of methods wherein integrals
over the PDOS are approximated via interpolatory quadrature, an
approach which we refer to as spectral quadrature (SQ). Gauss
SQ represents a particular variant of the SQ method. Similarly,
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the Clenshaw-Curtis/Fejér SQ method, which is equivalent to the
FOE method in terms of Chebyshev polynomials, is another variant
of the SQ method. Here, we derive rigorous error estimates to
establish the convergence, stability and convergence rate of the
SQ method. We utilize this analysis to discuss the scaling and per-
formance of the approach, which is also applicable to the FOE and
recursion methods. However, from the perspective of implementa-
tion, the SQ and FOE methods have some notable differences. The
SQ method does not involve the calculation of the complete den-
sity matrix, and therefore utilizes matrix-vector multiplications
rather than matrix-matrix multiplications. Unlike FOE, the Fermi
energy is not required as input to the method, and quantities like
the entropic contribution due to smearing can be evaluated with-
out any additional effort. This limitation of FOE can be overcome
by storing the intermediate matrices (e.g. Chebyshev), though at
the cost of substantial computer memory requirement. Finally,
the SQ method can achieve variable resolution in the simulation
domain by spatially varying the order of the quadrature rule.

One of the common approaches to solve the DFT problem is
through self-consistent field (SCF) method [1]. In each iteration
of the SCF method, the electron density

p(x) =2 g, () (1)

is calculated by solving the linear eigenvalue problem
Hiy(X) = Antfy (X) (2)

for the orbitals y,(x), subject to the constraint on the total number
of electrons N, = 2%",g,. We denote the Hamiltonian by H, and 1,
are its eigenvalues corresponding to y,(X). The orbital occupations
are given by the Fermi-Dirac distribution g, = (1+exp
((4n — %)/0))~", where ¢ is the smearing and / is the Fermi energy.
Once the self-consistent solution has been obtained, the evaluation
of the ground-state free energy involves the calculation of the band
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structure energy U, and the entropic contribution S of the fractional
orbital occupations. They can be expressed as [23]

U=2> gun, 3)

S=20) |g,log(g,) + (1 - g,)log(1 —g,)]. (4)

In this Letter, for a given Hamiltonian, we focus on the O(N) calcu-
lation of p, U and S using the SQ method. This combined with O(N)
approaches for the electrostatics [24-26] enables the O(N) solution
of the complete DFT problem.

2. Theory

In Section 2.1, we reformulate the DFT problem. We derive rig-
orous error estimates in Section 2.2, which is used to determine the
convergence rates in Section 2.3. We discuss the scaling and per-
formance of the SQ method in Section 2.4, and finally discuss alter-
native forms of smearing in Section 2.5.

2.1. Integral representations

Consider a self-adjoint Hamiltonian H over a finite-dimensional
Hilbert space with a localized orthonormal basis {’7p} and inner
product (., .). Let the matrix representation of H be sparse with or-
dered eigenvalues {, }m:] We map the spectrum of A to the inter-
val [-1,1] using the transformation H = (H — yZ)/¢, where
E=(m—4)/2,x =+ 4)/2, and T represents the identity
operator. Starting from the PDOS "M ({,y,)6(4 — n) (W, O [18],
we define the integrated PDOS as [22]

0, if 7 <

m M M N N

ZZZ%W“ a%pa> if )¥m < A < dmy1,
= n=1p=1gq=1

M M M . K
SN VnpWnglolas if dw < 2
p=1¢g=1

n=1p=

Ere(2)

where y,,(X) = Zl",": 1WnpM,(X) and {im}x:] are the eigenvalues of H.
Note that the derivative of £; (1) represents the density of states of
# projected onto the function ((X)= Z:‘,":lcpnp(x). Let

g = (1 + exp ((i - iﬂ/&))il denote the scaled and shifted

Fermi-Dirac distribution, where & = a/¢and i = (4; — y)/& We
define u(i) = (¢1+)g(i) and s() = olg(}) logg(i) + (1 - g(4))
log(1 — g(4))). Using Eq. 5, we arrive at the Riemann-Stieltjes inte-
grals [21,22,27]

M 1
N, 22 / 8185, (2).
p=17-

1
p(xo) =2 / g(i)des (), (6)
U:ZZ/ 5)de, . (),
S5= 22 / J)de, (),

where X, is any chosen point in space and {y(x) = Z;A;/':177p(X0)”Ip(X)-
2.2. Error estimates

We consider the representative integral

1
- / yde () 7)

where f(1) denotes any of the integrands in Eq. 6, and &, (1) denotes
the corresponding integrated PDOS. In the SQ method, we approxi-
mate I(f) VXlth a K-point mterpolatory quadrature rule I (f) having
nodes {7}, , and weights {W }k | le.

Ie(f) = Zw (45), (8)

whose error

E(f) =1(f) — Ik (f). (9)

We start by expressing the function f(7) in terms of a uniformly
convergent Chebyshev polynomials (T,) expansion as

£0) = S oaTi(d), (10)
k=0
whereby
= iakE(Tk). (11)
k=0

Consider an ellipse & in the complex plane C within and on which
f(z),z € C is analytic. Let & have foci at +1, semi-major axis a and
semi-minor axis va? — 1. Further, let r denote the sum of the
semi-major and semi-minor axes i.e. r=a+ va? —1. It can be
shown that [28]

_2M(f)

| k‘ B r"

: (12)

where M, (f) is the maximum value of |[f(z)| on &,. Consider a quad-
rature rule which integrates polynomials up to degree nK — 1 ex-
actly (1 < n<2).Wehave E(T) =0,k=0,1,...nK — 1. For k > nK

E(Ty)| ‘/ T (1)dE

where C* = [, d¢&;;

S Jal[ET)

k=0
_2(C + WiMi(f)
Somk-i(r—1)

+ Ik (Te)| < C + Wy, (13)

(%) and W = Zk 1 |W;|. Therefore,

= E(Ty)
E(f)]| < <am )y O
k=0

(14)

Specializing this bound for the integrals in Eq. 6, we arrive at the
following error estimates

4(M + Wi)M,(g)
|Ne*NeK| < r"’H(r— 1) ’
4(C + WM,

Iptta) — pyna) < 1 ETETHE, (1)

4(M + W )M, (u)
|U - UK‘ < WVK*U

4(M + W )M (s)

S =S < =it

Above, we have used the notation Wy = Zp IWZ", and the identity
C" = 1. The value of n is determined by the variant of SQ employed.
For an interpolatory SQ with the quadrature nodes fixed apriori, we
have n = 1. An example is the Clenshaw-Curtis/Fejér SQ, which in
principle is equivalent to the FOE method in terms of Chebyshev
polynomials. However, when all the nodes are treated as unknowns,
we obtain Gauss SQ with the maximum value of n = 2. We note that
the bounds derived above are particularly tight when the
integrands (g(4),u(4) and s(4)) are analytic in only a small
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