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a b s t r a c t

Helicoid-like precipitation structures emerging in the wake of reaction–diffusion fronts are studied
experimentally as well as theoretically. We find that the helicoids are stretched, their local pitch behind
the advancing front increases exponentially. We compare this result to the exponential increase of the
band spacing in Liesegang phenomena. The spacing coefficient (p) characterizing the exponential increase
satisfies the same Matalon–Packter law in both cases, i.e. p � 1/a0 where a0 is the initial concentration of
the outer electrolyte in the experimental setup. Our experiments also reveal that, at the microstructure
level, the helicoids are assembled from building blocks of micron-size achiral spherulites.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Helical and helicoidal structures are common architectures in
nature and in man-made systems such as inorganic crystals or
nanohelices [1–5]. The formation of these inherently chiral pat-
terns is an interesting and rather complex problem due to the sym-
metry breaking which takes place at some stage of their evolution.
In our recent work [6] we showed that emergence of helicoids and
helices in precipitation processes in the wake of a planar reaction–
diffusion front is an intrinsic property of the system and (in con-
trast to coming from initial and boundary condition effects) it
can be attributed to a sophisticated interplay among the noise,
the moving front, and the unstable modes of the precipitation
dynamics. Our findings reveal that the emergence of helicoidal
and helical patterns is reproducible with a finite, well-defined
probability depending on the parameters of the system such as
the initial concentration of the outer and inner electrolytes, the
temperature and the width of the system (see Figures 1 and 2 for
the experimental setup). Remarkably, the trends in the observed
probabilities could be reproduced by generalizing a model used
earlier for explaining Liesegang phenomena [6].

The helicoids and helices are actually closely related to Liese-
gang patterns which are precipitation patterns emerging in the
wake of reaction–diffusion fronts, but the precipitation zones are
parallel to each other. The position of the bands, their width, and
their time of appearance are well characterized for Liesegang pat-
terns [7–9]. In particular, the distance between consecutive bands

in regular Liesegang phenomenon increases as a geometrical series
and it can be characterized by the so-called spacing coefficient, p,
such that xn+1 � xn = pxn, where xn+1 and xn are the positions of
two consecutive bands measured from the initial junction point
of the electrolytes. This is the well-know spacing law which has
been the focus of a large number of studies [8–10]. It has been
shown experimentally that the spacing coefficient depends on
the initial concentrations a0 and b0 of the outer and inner electro-
lytes, as described by the following relation (Matalon–Packter law)
[11,12]:

p ¼ f b0ð Þ þ
g b0ð Þ

a0
; ð1Þ

where f and g are weakly dependent (decreasing functions) of their
arguments.

It is a natural question whether the method of characterization
of bands can be extended to helices as well, where the distance be-
tween the bands is equivalent to the local pitch of the helices. Our
aim with this letter is to suggest that the spacing law and the re-
lated Matalon–Packter law are valid for helices. This suggestion
is supported by the accord between our numerical simulations
and the experimental findings. We also examine the microstruc-
ture of precipitation helicoids in order to ascertain that the origin
of macroscopic helices is in symmetry breaking and not the chiral-
ity of the microscopic building blocks.

2. Experimental

Our experiments concerned the CuCl2 and K2CrO4 precipitation
reaction in a 1% agarose gel according to the chemical reaction
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Cu2þðaqÞ þ CrO2�
4 ðaqÞ ! CuCrO4ðsÞ [13]. Agarose gel in a test tube

contained potassium chromate as inner electrolyte was prepared
by dissolving potassium chromate (K2CrO4, Sigma–Aldrich – the in-
ner electrolyte) in double distilled water with the given amount of
agarose powder (Type I, Sigma–Aldrich). The mixture was heated
to 90 �C under constant stirring until a homogeneous solution was
obtained. The resulting solution was then poured into test tubes of
16 mm diameters. After polymerization (2 h) a solution of copper
chloride (CuCl2, Sigma–Aldrich – the outer electrolyte) was gently
poured on top of the potassium chromate-doped gel (see Figure 1
for the experimental setup). The pattern formation was monitored
at room temperature (22.0 ± 0.3 �C) by a digital camera for 7 days.
All experiments were carried out with much higher concentrations
of the outer electrolyte (CuCl2). Details of the experimental param-
eters used are described in Ref. [13]. Experimental results indicate
that both the Liesegang bands and the helicoids/helices emerge in
a wide range of the parameters. In general, we found that precipita-
tion helicoids formed with higher probability when the concentra-
tion of the outer electrolyte was higher, thus ensuring fast motion
of the front [6]. Noise (e.g., thermal) also plays a crucial role in heli-
coid formation, probability of the emergence of helicoids increases
with the amplitude of the noise. Finally, the radius of the test tube
also has the influential effect. The probability of helicoidal pattern
formation increases with the radius of the test tube. Moreover, there
is a critical radius, below which only Liesegang bands are formed
regardless of the other parameters.

3. Numerical

Models of Liesegang phenomena use various aspects of pre- and
post-nucleation dynamics. A theory that incorporates both dynam-
ics through a phase separation scenario is based on the Cahn–Hil-
liard equation [14]. This description features fast, spinodal-
decomposition type precipitation dynamics, as well as slower,
nucleation-and-growth processes [15] and it can reproduce all

the well-established laws related to Liesegang patterns (time-,
spacing-, width-, and Matalon–Packter laws) [8–12].

We use the Cahn–Hilliard dynamics combined with reaction–
diffusion equations which produce the reaction front where the
particles for the precipitation are produced. Assuming an irrevers-
ible reaction A + B ? C between the outer (A) and inner (B) electro-
lytes, the pattern formation phenomena in the gel is described by
the following reaction–diffusion equations

@ta ¼ DDa� kab ð2Þ

@tb ¼ DDb� kab ð3Þ

@tm ¼ �kD m�m3 þ rDm
� �

þ kabþ gc; ð4Þ

where k is the reaction rate and, for simplicity, the diffusion coeffi-
cients (D) of the reagents are taken to be equal. m is the shifted and
appropriately scaled concentration of the precipitating particles (C).
The front is described in terms of the spatio-temporal properties of
kab (rate of production of C’s), and k, r, gc are the rescaled kinetic
coefficient, surface tension, and conserved noise, respectively
[6,16]. During the precipitation process the C particles segregate
into low (cl: m = �1) and high (ch: m = 1) concentration states de-
scribed by Eq. (4) (for the detailed model description see Refs.
[6,16]). Eqs. (2)–(4) were solved by applying a ‘method of lines’
using spatial discretization on a rectangular grid followed by inte-
gration of the resulting ordinary differential equations by the for-
ward Euler method. The conserved noise gc was realized by
moving Cs to neighboring sites at a rate gc ¼ r

ffiffiffi
c
p

, where r is a ran-
dom number uniformly distributed in an interval [�g, g] with g
characterizing the strength of the noise. The grid spacing and the
time step were 1.0 and 0.02, respectively. We used periodic bound-
ary conditions in the y direction (see Figure 1 for the reason of peri-
odicity) and no-flux boundary conditions at the lower edge of the
gel (x = Lx, y). The boundary condition at the upper edge (x = 0, y)
for A is a Dirichlet boundary, according to the assumption that the
concentration of the outer electrolyte is kept at a constant value
aðx ¼ 0; y; tÞ ¼ a0=�c, while Neumann (no-flux) boundaries are used
for B and C. The outer electrolyte concentration (a0) was scaled by
�c ¼ ðch þ clÞ=2 in both experiments and numerical simulations. As
can be inferred from Figure 1, parallel zones and tilted lines in sim-
ulations correspond to regular Liesegang and helical patterns,
respectively. Solving the above numerical model with various initial
and external parameters allowed us to characterize the spacing
coefficient of helices and to compare these data with the experi-
mental findings.

4. Results and discussion

In our experiments, helicoidal patterns emerged in columns of
gel placed in test tubes. In this setup a planar diffusion front of
the outer electrolyte moves into the gel and, in general, produces
a series of distinct precipitation disks which is called the regular
Liesegang pattern (see Figure 2). However, using the same experi-
mental conditions, helicoidal pattern can also evolve (with well-
defined probability) showing the stochastic nature of this phenom-
enon. In order to compare the properties of regular and helicoidal
patterns, we carried out at least 10 independent experiments at the
same fixed parameters and conditions.

To investigate the Matalon–Packer law for the helicoids we
need to generalize the concept of spacing coefficients for helices.
This can be done by defining xn through the position of the nth
crossing of the helix at a given y (Figure 2), and then xn+1/xn -
� 1 = pn should converge to the spacing coefficient p for large n
(plotting xn+1 versus xn and determining the slope of fitted linear
curve). Note, that helices are often characterized by their pitch. It

Figure 1. Transformation of the 3D experimental setup into a 2D domain used in
numerical simulations. The unfolding of the cylinder onto the 2D domain (Lx � Ly)
requires that the boundary conditions are periodic in the horizontal direction, and
the width of the domain Ly is defined by the radius R of the cylinder: Ly = 2pR. The
single brown line (C) of helix in 3D corresponds to a set of tilted precipitation zones
(lines) joined by the periodic boundary condition. Blue and yellow colors mark the
regions where the reagents (A – outer electrolyte, B – inner electrolyte) are placed
initially. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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