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a b s t r a c t

On the basis of the free energy landscape theory, we develop a framework to calculate the structural
relaxation time in supercooled liquids and glasses. By the framework, the relaxation time is obtained
by an escaping time from a basin in a given free energy surface. In order to demonstrate its usefulness,
we apply the framework to monodisperse hard-sphere glass systems. Then we show that the relaxation
time increases drastically with the density. Additionally, we discuss an explicit picture of the coopera-
tively rearranging region by analyzing the spatial distribution of an activation free energy of one particle.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Despite numerous theoretical and experimental efforts, the
glass transition is far from complete understanding. One of the rea-
sons for this difficulty lies in the fact that various anomalous
behaviors in the vitrification process are exhibited by both thermo-
dynamic and dynamic properties [1]. For example, the specific heat
changes abruptly at the glass transition temperature Tg . The struc-
tural relaxation time tends to diverge at a temperature below Tg .
Therefore, it is important to construct a theory providing a unified
understanding of these thermodynamic and dynamic anomalies.

A unified understanding of these behaviors has been provided
by the free energy landscape (FEL) theory through dynamics on
rugged free energy surfaces [2–9]. By the theory, the free energy
surface is expressed as a function of coarse-grained configurations
of liquid particles fRig [2]. The rugged structure of the free energy
surface is obtained at low temperatures. The specific heat [3] and
the relaxation time [8,9] have been calculated from dynamics on
model free energy surfaces. The calculated specific heat changes
abruptly at Tg [3]. Additionally, the temperature dependence of
the relaxation time is agreement with that observed by the exper-
iments [8,9].

Recently, Yoshidome et al. have constructed the FEL on the basis
of a microscopic Hamiltonian [10–12]. From a microscopic Hamil-
tonian, the free energy functional was obtained by the density
functional theory (DFT) [13]. In order to express the free energy
function of Ri, a sum of Gaussian functions with the center of Ri

was employed as a density field [14,15]. Using the method, they
obtained rugged free energy surfaces for monodisperse hard-
sphere systems.

Since the FEL for actual systems has been constructed on the ba-
sis of a microscopic Hamiltonian, physical quantities such as the
relaxation time for actual systems can be obtained using the FEL.
In particular, it is desirable to calculate the relaxation time, be-
cause the time scale of the relaxation time is too long to obtain
by the molecular dynamics simulation (MD). As described later,
we can obtain it without executing MDs if the FEL is constructed.

It is known that a key concept for understanding the mecha-
nism of the relaxation process is the cooperatively rearranging re-
gion (CRR) proposed by Adam and Gibbs [16]. The CRR is the
minimum area required for particle rearrangements causing struc-
tural relaxations. Using the concept, Adam and Gibbs have shown
that the relaxation time is in proportion to exp½NCRRDl�. Here, NCRR

is a number of particles in a CRR, and Dl is the activation free en-
ergy of a particle. In their theory, Dl is assumed to have no spatial
distribution and no temperature dependence.

We need to estimate Dl microscopically in order to discuss
validity of the theory developed by Adam and Gibbs. Adam and
Gibbs expressed the relaxation time by NCRR and Dl. Although
NCRR for a hard-sphere system was already studied before [11],
there is no study of Dl. In particular, we examine the assumption
that Dl does not have a spatial distribution. We can consider that
the assumption is not valid, if there is dynamical heterogeneity
shown by the MD simulations [17].

In the present letter, on the basis of the FEL theory, we propose
a method to calculate the relaxation time from free energy surfaces
of actual systems. Applying the method to monodisperse hard-
sphere particles in the CRR, we show density dependence of the
relaxation time. Using the FEL, we define the activation free energy
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of a particle, and then analyze its spatial distributions. Calculating
density dependence of the spatial distribution, we show that the
activation free energy increases owing to contributions of particles
at a boundary of the CRR.

On the basis of the potential energy landscape (PEL), other
methods to treat the slow dynamics have been employed
[18–20]. In the methods, jump motions among minima (inherent
structures) and meta-basins are considered. The dynamics on the
PEL, therefore, includes the fast vibrational motions of atom and
the structural relaxation processes. In contrast, the structural
relaxation processes are focused on in the FEL theory. Especially,
hard-sphere systems can be treated only by the FEL.

2. Theory

All the calculations of the free energy landscape are executed by
the procedure proposed by Yoshidome et al. [10–12]. On the basis
of the DFT, the grand potential X½qðrÞ� is expressed as a functional
of the density field qðrÞ. As the density field, the sum of Gaussian
functions qGðr;a; fRigÞ is employed. Here, a and Ri are the width
and center of the Gaussian function [11,14,15]. By substituting
qGðr;a; fRigÞ into X½qðrÞ�, the free energy is given by

bDXða; fRigÞ � bX½qGðr;a; fRigÞ� � bXðqÞ: ð1Þ

Here, b is given by b ¼ 1=ðkBTÞ where kB is the Boltzmann constant
and T is the temperature, and q is given by V�1 R drqðrÞ, where V is
the volume. We note that bX½qGðr;a; fRigÞ� is a functional of
qGðr;a; fRigÞ. In order to calculate X½qðrÞ�, the Ramakrishnan–Yus-
souff (RY) free energy functional [21] is adopted. Eq. (1) is then gi-
ven by

bDX½qðrÞ� ¼
Z
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where DqðrÞ ¼ qðrÞ � q, and cðjr� r0jÞ is the second direct correla-
tion function.

The free energy is analytically calculated [10] by

bDXða; fRigÞ ¼ Fidða; fRigÞ þ F0 �
N
2

I0ðaÞ �
X

i

X
j>i

Iða; jRijjÞ; ð3Þ

where jRijj is the distance between Ri and Rj, and N is given by qV ,
and Iða; jRijjÞ is defined by

Iða; jRijjÞ ¼
1
2

a
p

� �3 Z
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drjcðjri � rjjÞ � exp½�aðri þ rjÞ2�

� exp½�aðrj þ RijÞ2�: ð4Þ

The Ri-dependence of the ideal part Fidða; fRigÞ in Eq. (3) can be
omitted under a large-acondition [14]. In the present letter, Eq.
(4) is analytically calculated by the large-a [22] and Percus–Yevick
[13] approximations. The detailed expressions of Eqs. (1), (3), and
(4) are given in Refs. [10,22].

We apply Eq. (3) to three-dimensional random packing struc-
tures (RPS) of hard-sphere particles constrained in a spherical shell
(see Figure 1). We prepare the RPS by the infinitesimal gravity pro-
tocol [11]. The number of particles was 486 and the number den-
sity was 1:04. To obtain the positions of particles at an objective
density qr3 (r is the diameter of the hard-sphere particle), we
modulate the position of particles by multiplication of
ð1:04=qr3Þ1=3. From the RPS, we choose particles shown by green
color1 in Figure 1. We leave the particles (white particles in Figure

1) surrounding the green particles over 2r and remove other parti-
cles outside the white particles. While we calculate the FEL, we move
the green particles and fix the positions of white particles. Here,

P
i

in Eq. (3) represents the summation over green particles, while
P

j>i

represents the summation over both green and white particles. Be-
fore the calculation of the FEL, the green particles are relaxed to min-
imize Xða; fRigÞ in the fRig space by the steepest descent method
with the positions of white particles fixed. The initial configuration
giving the minimum of Xða; fRigÞ is denoted by fR0

i g.
We determine the number of green particles so that the number

is in agreement with that of the CRR. In the previous paper [11], the
number of particles of a CRR NCRR was estimated by modulating
the number of green particles as follows. After the positions of the
white particles are fixed, a FEL is first constructed by one particle
(A-particle shown by black in Figure 1) forced to displace toward
one direction. When the number of the green particles is large,
the system can transit from the initial basin to an adjacent basin.
For a small number, in contrast, the system cannot transit. Then,
NCRR is defined by the smallest number of the green particles. By
the procedure, the density dependence of NCRR was obtained:
NCRRðqr3Þ ¼ 2:5=ð1:3� qr3Þ1:7[11]. Using this equation, we esti-
mate NCRR for all the density employed in the present calculation.

In order to produce a structural relaxation in the constrained
particles, we force the A-particle to displace toward one direction.
We choose the A-particle whose position is away from the center
of green particles about r. After the A-particle is forced to displace,
the green particles are relaxed to minimize the free energy with
the position of the A-particle fixed.

The explained procedure allows us to focus on a one-dimen-
sional motion of the tagged particle (A-particle). The other parti-
cles than the A-particle are relaxed to minimize the free energy.
Then we can uniquely determine the path connected between gi-
ven two basins in a multi-dimensional phase space. The free en-
ergy landscape along the one-dimensional path can be given by a
function of the displacement of the A-particle DRA.

The free energy difference between the initial and new config-
urations fR0

i g and fRig is given by

bdXðDRA;qr3Þ � bDXða; fRigÞ � bDXða; fR0
i gÞ

¼
XNCRR

i

X
j>i

�Iða; jRijjÞ þ Iða; jR0
ijjÞ

h i
: ð5Þ

Figure 1. A schematic picture of the system. The black particle is the A-particle.

1 For interpretation of color in Figure 1, the reader is referred to the web version of
this article.
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