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a Department of Physics and Biophysics, University of Warmia and Mazury, Oczapowskiego 4, 10-719 Olsztyn, Poland
b Faculty of Health Sciences, Collegium Medicum NCU, 15 Jagiellońska Street, 85-067 Bydgoszcz, Poland
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a b s t r a c t

In the case of fluorescence investigation of systems, which are isotropic in the macro scale but anisotropic
in the micro scale, a Bayesian approach to an inverse problem allows finding distributions of model
parameters. Next, this approach provides capacity to ascertain, whether the aligning potential alters dur-
ing an electronic excitation of the fluorescence probe. The usage of the synthetic data set allows to specify
an extent of a priori information necessary to a description of the data. As a numerical basement for
Bayesian calculations the Differential Evolution Markov Chain method is employed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The polarized fluorescence measurements are widely used to
determine physical properties of ordered systems. The special case
of them are systems ordered in the micro scale but macroscopically
isotropic, such as vesicles suspensions or solutions/suspensions of
labeled macromolecules. The vesicles suspensions are very conve-
nient objects to study properties of the ordered systems, especially
lipid layers, due to easiness of a preparation and an investigation
by means of the fluorescence depolarization method [1–3]. There
can be made out a local director, perpendicular to the surface of
the vesicle, describing the local order of the molecules. The rota-
tional motion of the fluorophores inside the membrane gives rise
to the depolarization of the fluorescence. Another example is solu-
tion or suspension of labeled macromolecules [4,5], where the
internal motion of the fluorescence labels and their alignment
can be treated in the similar manner. The macroscopic symmetry
of such systems allows only three independent components of
the polarized fluorescence, IkðtÞ; I?ðtÞ; and ImagðtÞ ¼ 1=3 IkðtÞ

�
þ2I?ðtÞ�.

In this work the depolarization process is assumed to take place
due to the potential restricted rotational diffusion of the fluoro-
phores. The relevant features of the molecular system rendered
by this model are (micro) viscosity, related to the diffusion tensor
and a probe–mesophase interaction, given by the aligning
potential.

An important consideration, discussed in [6–8] states that dur-
ing the process of the electronic excitation the molecules may un-
dergo changes of their electric properties or even shapes enough

radical to change the way they interact with their surroundings.
There is experimental evidence for the changes in the polarity
and the polarizability of the fluorophores caused by the electronic
excitation [3,9–12], so two aligning potentials must be introduced,
VgrðXÞ for the ground state and VexðXÞ for the excited one. Conse-
quently, there are two angular equilibrium distributions functions
defined as follows:

fstðXÞ ¼
1

Ngr
exp �VstðXÞ

kBT

� �
st ¼ gr; ex; ð1Þ

where X is the angular position of a molecule, kB is the Boltzmann
constant and T is the temperature.

A statistical study of the experimental data meets problems
concerning a proper identification of resulting values of model
parameters, especially these ones, which are related to the aligning
potential. In the case where different interactions in the ground
and the excited state are expected, a method consisting in finding
the minimum value of the merit function fails, due to a large num-
ber of comparably well fitted sets of the parameters.

In order to overcome this problem, the Bayesian probability
theory is employed. It makes possible a probabilistic description
of the model parameters and provides a tool able to make a com-
parison between different models. The probability distribution
function (pdf) pðu j DÞ of the model parameters collected in an n
dimensional vector u, conditioned on data D is given as follows:

pðujDÞ / pðDjuÞ pðuÞ; ð2Þ

where pðD j uÞ is the likelihood and pðuÞ is the prior probability dis-
tribution function.

Finding the solution to the inverse problem (2) is, in this case,
impossible without a numerical method able to sample the poster-
ior parameters distribution pðu j DÞ. The Differential Evolution
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Markov Chain (DE-MC) method [13] turns out to be a very profi-
cient tool.

The goal of this Letter is twofold. With two models at choice,
one allowing the change of the interaction during electronic exci-
tation and one forbidding such a behavior, the one which provides
the better description of the synthetic data is to be chosen. Next,
within a framework of a given model, the estimates of the model
parameters must be calculated.

2. Theory

2.1. Bayesian probability approach

In the least square approximation the inverse problem (2) reads
[14]:

pðu j D;HÞ / exp �1
2
v2ðuÞ

� �
pðu j HÞ; ð3Þ

where v2ðuÞ is the merit function and H is the hypothesis concern-
ing an appropriate model.

The probabilistic solution to the inverse problem consists in
characterizing the posterior pdf pðu j D;HÞ, which may be achieved
by providing mode (s) of the pdf, its mean value, variance and
covariance matrix or plotting one- or two-dimensional marginal
posterior distributions for chosen parameters.

Passing onto the hypotheses testing, we must calculate the
probability pðH j DÞ of the hypothesis H given data D. For two
competing hypotheses, H1 and H2, a measure how much one of
them is superior to the other in the data description is given by
the odd-ratio R [15]:

R ¼ pðH1 j DÞ
pðH2 j DÞ

: ð4Þ

If we give equal chances to both the hypotheses at the very
beginning, so pðH1Þ ¼ pðH2Þ, R reads:

R ¼ pðD j H1Þ
pðD j H2Þ

: ð5Þ

The quantity pðD j HÞ is called the marginal posterior likelihood
or evidence for the hypothesis H[16] and in our case is given by:

pðD j HÞ /
Z

. . .

Z
exp �1

2
v2ðuÞ

� �
pðu j HÞdu: ð6Þ

We interpret the odd-ratio R as follows: respectively, values
ln R 6 1; 1 < ln R 6 3; 3 < ln R 6 5 and 5 < ln R correspond to
‘vague’, ‘moderate’, ‘strong’ and ‘very strong’ evidence against the
H2 hypothesis [15].

We assign flat, informative priors to all the parameters. Such a
prior bounds the value of the parameter ui into some interval
½umin

i ;umax
i �. In order to properly assign these bounds, we can use

all available knowledge concerning the investigated physical
system, results of previous analyzes or theoretical predictions
[14].

2.2. Differential Evolution Markov Chain (DE-MC)

This modification of the Markov Chain Monte Carlo (MCMC)
[17] method was introduced in [13]. A distribution of interest
p(.) is sampled by a multichain adoption of the Metropolis algo-
rithm, with N chains, which are ran in parallel. An update to a cur-
rent state of the given chain originates from differences of the
points belonging to different chains. Schematically, for the rth
chain a candidate point x̂ðrÞ is given by:

x̂ðrÞ ¼ xðrÞ þ cðxðpÞ � xðqÞÞ þ b; ð7Þ

where c is a scaling factor, two chains p and q are randomly chosen
and b is a vector of small random numbers.

Only one adjustable parameter c is needed by DE-MC. A selec-
tion of b is not critical, its components only need to be small in
comparison with components of x. In practical applications, the
components of b can be drawn from the uniform distribution
Uð�b; bÞ.

DE-MC works because, after the convergence, the vectors of dif-
ferences xðpÞ � xðqÞ in the population of the chains render the shape
of the underlying distribution of interest. Formally speaking the
differences follow the variance–covariance matrix of the target dis-
tribution when the number of the chains N !1 [13].

An m elements sample x1; . . . ; xm drawn from the target pð:Þ al-
lows us to calculate MCMC averages of any function f ðxÞ [17]:

hf ðxÞi ¼
Z

f ðxÞpðxÞdx � 1
m

Xm

i¼1

f ðxiÞ: ð8Þ

In the case of the probabilistic inverse problem the target distri-
bution pð:Þ is the posterior distribution pðu j D;HÞ, and we set
x ¼ u.

2.3. Polarized fluorescence decays

We assume that the fluorescence depolarization is due to the
rotational diffusion of the fluorophores, embedded in the uniaxial
homogeneous mesophase. The timescale of the rotational or trans-
lational motion of the probe carrier should be much greater than
all timescales concerning the fluorophores. The photo-physical fea-
tures of the molecules are described by the absorption and the
emission dipole moments, which are assumed to be parallel to
the Z axis of the molecular coordinate frame. We consider the radi-
ative depopulation process of the excited state quantified by the
constant rate kF . The aligning potentials are modeled by expan-
sions in the base of the Legendre polynomials PjðbÞ, with only
two expansion coefficients uð2Þst and uð4Þst ; st ¼ gr; ex [18]:

VstðbÞ ¼
X
j¼2;4

uðjÞst PjðbÞ; ð9Þ

where b is an angle between the molecular frame Z axis and the lo-
cal director. The relevant hydrodynamic behavior is quantified by
the diffusion tensor component D?, related to the ’tumbling’ motion
of the probe.

The components of the fluorescence intensity IkðtÞ and I?ðtÞ, are
given as follows [3,18]:

IkðtÞ ¼ Ae�kF t 1þ 4
5

X2

p¼�2

UpðtÞ
" #

; I?ðtÞ

¼ Ae�kF t 1� 2
5

X2

p¼�2

UpðtÞ
" #

; ð10Þ

where A is the amplitude of the fluorescence decay and UpðtÞ are the
correlation functions, obtained from the solution to the equation of
motion.

The potential restricted rotational diffusion of the fluorophores
is described by the Smoluchowski equation [19] governed by the
time-development operator [20,21,18]. The solution to this equa-
tion depends on the aligning potential and D? and is expressed
by the molecular correlation functions 22Vp0

p0ðtÞ; p ¼ �2; ::; 2. Un-
der presented assumptions UpðtÞ ¼ 22Vp0

p0ðtÞ [18].
The boundary properties of these functions involve the orienta-

tional distribution functions in the both states [8]:

22Vp0
p0ðt ¼ 0Þ ¼ ð�1Þ�p

X4

L¼0

Cð22L; p� pÞ

Cð22L; 0 0Þ DðLÞ0;0

D E
gr

DðLÞ0;0

D E
gr
;

ð11Þ
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