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a b s t r a c t

Density functional theory for molecular fluids developed by Donley et al. (J. Chem. Phys. 101 (1994) 3205)
is extended to include the effects of orientation-dependent bridge functions associated with the inter-
particle, triplet correlations. Resultant integral equations for the pair and direct correlation functions
are solved for water, where the three-body direct correlation functions are approximated in terms of
two-body functions. A test calculation employing a simple Gaussian form for the two-body function
between the oxygen sites then provides a promising result to improve the description of the oxygen–oxy-
gen correlations in liquid water at room temperature.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical elucidation of structural and thermodynamic prop-
erties of water has attracted much attention, since water is one of
the most important and fascinating compounds in nature. In addi-
tion to microscopic computer simulations based on the Monte Car-
lo [1] and the molecular dynamics (MD) [2] methods employing
reliable force fields between water molecules, there have been a
number of analytical attempts to develop molecular theories for
the structure of bulk water. In this context, the reference interac-
tion site model (RISM) [3–5] has provided a useful theoretical
framework to describe the correlational and thermodynamic prop-
erties of molecular fluids including water. Combined with standard
closure relations such as the hypernetted-chain (HNC) approxima-
tion [3,6] developed for simple liquids, the RISM theory was imple-
mented [7] for the MSPC model of water, where the SPC model [8]
was modified to include a repulsive potential between the oxygen
(O) and hydrogen (H) sites to avoid the divergence in solution to
the integral equations. Later, a diagrammatically proper theory
proposed by Chandler et al. [9] was also applied [10] to the MSPC
model of water, thus leading to moderately successful descriptions
[11] of structural and thermodynamic properties of water fluids as
well as the original RISM approach did [7]. Further, as an alterna-
tive approach, the molecular Ornstein–Zernike (MOZ) theory
where the two molecule correlation functions are expanded in
terms of spherical harmonics and the resulting coefficient equa-
tions are solved along with the HNC and reference HNC closures
[12,13] was also applied to water fluids. Employing the SPC/E mod-

el of water [14] in which the O–H repulsion is not needed, the
numerical calculations [12,13] on the basis of the MOZ theory
appropriately reproduced the computer simulation results for the
correlational and thermodynamic properties of water fluids at high
temperatures, while they did not give satisfactory results at room
temperature concerning the description of ice-like tetrahedral
structures.

Another theoretical formalism for describing the structure of
molecular fluids is based on the density functional theory (DFT)
for classical-mechanical systems [3,6,15,16]. In the framework of
DFT one begins with an expression for (grand) free energy as a
functional of density profile in an external field. A minimization
of this functional with respect to the density profile gives the den-
sity distribution of system at equilibrium. If the external field is
due to an inserted molecule at the origin, then the density profile
of the fluid in the field is related to the pair distribution functions
in a uniform fluid [17]. By extending the DFT for molecular fluids
developed by Chandler et al. [15,16], Donley, Curro and McCoy
(DCM) [18] derived a set of integral equations for obtaining the
two-point intermolecular correlation functions, where the radial
distribution functions were expressed as two-molecule averages
over a Boltzmann factor involving bare site–site interactions and
pairwise additive, medium-induced potentials which mimicked
the remaining molecules in the system. DCM then demonstrated
that their DFT method gave a good agreement with a simulation
of homonuclear diatomic molecules. Later, Reddy et al. [11] and
Sumi et al. [19] applied the DCM theory to the SPC and SPC/E mod-
els of water, respectively, thus finding the superiority of the DCM
theory over other theories above in the descriptions of intermolec-
ular correlations in high-temperature water fluids. However, as in
the MOZ theory, the results for the oxygen–oxygen correlations
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were found to be poor at room temperature, which may be attrib-
uted to the importance of three-body correlations missing in the
DCM theory [11,19].

In order to improve the DFT-based DCM theory for the descrip-
tion of correlational properties of liquid water, we here reformu-
late the DCM theory so that the triplet density correlations
neglected in the HNC-like, second-order truncation of free energy
functional [18] are taken into account through higher-order den-
sity expansions. A factorization ansatz [20,21] for the triplet direct
correlation functions is then employed to derive improved, DFT-
based integral equations for the pair correlation functions, in
which the contributions of the bridge functions [3,6,20,21] beyond
the HNC approximation are appropriately incorporated. In the fol-
lowing section we illustrate a formulation of the present theory for
expressing anisotropic bridge functions that depend on molecular
orientations in terms of two-body functions. A preliminary, test
calculation in which a dominant, O–O pair correlation is consid-
ered for the bridge functions is then attempted in Section 3 to
investigate a possibility of improvement over the HNC scheme in
the O–O radial distribution function at room temperature. Sum-
mary is given in Section 4.

2. Theory

Let us consider a fluid system consisting of one-component ri-
gid molecules whose average density and temperature are q and
T, respectively. We rely on the classical DFT [3,6,15,16,18] for the
description of many-body correlations, and insert an additional
molecule of the same type into the system [17] whose configura-
tion is represented by fRg ¼ fRcg, where Rc refers to the coordi-
nate of the cth site (c ¼ 1;2; . . . ; s) of the inserted molecule. The
field at the gth site, rg ðg ¼ 1;2; . . . ; sÞ, of a system molecule is
then expressed as

wg rg
� �

¼ �Ug rg
� �

þ wLg

¼ �b
Xs

c¼1

vgc rg � Rc
� �

þ wLg ð1Þ

in terms of the external field Ug rg
� �

composed of site–site interac-
tion potentials vgcðrÞ and the site chemical potential wLg in the
unperturbed state, where b ¼ 1=kBT with kB being the Boltzmann
constant and the subscript ‘L’ symbolically represents the homoge-
neous, liquid state.

According to a recipe of the DFT, we suppose a virtual, noninter-
acting molecular system represented by a subscript ‘0’ whose den-
sity distribution qgðrÞ of the system molecules is identical to that
of the actual, interacting system in the presence of external field.
The radial distribution function of the actual system can then be gi-
ven by [18]

gab ra � Rb

� �
¼ exp

X
g

w0g rg
� �

� w0Lg

h i( )* +* +P

ra ;Rb

ð2Þ

in terms of the field w0g rg
� �

of the noninteracting system, where
h ih iPra ;Rb

represents the orientational avarage of the system and
external (inserted) molecules with the ath site of the system mole-
cule and the bth site of the external molecule held fixed at ra and Rb,
respectively. The site–site pair correlation function is accordingly
given by habðrÞ ¼ gabðrÞ � 1.

In order to calculate the right-hand side of Eq. (2), we consider
the dimensionless (measured in units of kBT) Helmholtz potential A
of the system and the corresponding, noninteracting one A0. When
we introduce the grand potential through the Legendre transfor-
mation as

W ¼ A�
X

a

Z
drwaðrÞqaðrÞ; ð3Þ

the variational principle to determine the equilibrium density is ex-
pressed as

dW
dqaðrÞ

¼ 0: ð4Þ

The functional derivative of A by the site density qaðrÞ gives the
field at the site a:

dA
dqaðrÞ

¼ waðrÞ: ð5Þ

We then expand the Helmholtz potential with respect to the
density deviation DqaðrÞ ¼ qaðrÞ � q around the unperturbed,
homogeneous state (L). In order to take into account the intermo-
lecular correlation effects beyond the HNC approximation, we re-
tain the expansion up to the third-order as

A q½ �¼ALþ
X
a

Z
dr

dA
dqaðrÞ

����
L

DqaðrÞ

þ 1
2!

X
a;b

Z
dr
Z

dr0
d2A

dqaðrÞdqbðr0Þ

�����
L

DqaðrÞDqbðr0Þ

þ 1
3!

X
a;b;c

Z
dr
Z

dr0
Z

dr00
d3A

dqaðrÞdqbðr0Þdqcðr00Þ

�����
L

DqaðrÞDqbðr0ÞDqcðr00Þ

þDð4Þ; ð6Þ

where AL and Dð4Þ represent the Helmholtz potential in the liquid
state and the contribution of higher-order terms beyond the third
order of Dq, respectively.

The functional derivative of Eq. (6) with respect to the site den-
sity thus provides

UaðrÞ þ
X

b

Z
dr0

d2A
dqaðrÞdqbðr0Þ

�����
L

Dqbðr0Þ

þ 1
2!

X
b;c

Z
dr0
Z

dr00
d3A

dqaðrÞdqbðr0Þdqcðr00Þ

�����
L

Dqbðr0ÞDqcðr00Þ

þ dDð4Þ

dqaðrÞ
¼ 0 ð7Þ

with the aid of Eqs. (1) and (5). These relations stand in the case of
noninteracting (0) system as well. Here we employ an approximate
truncation as

Dð4Þ � Dð4Þ0 ’ 0; ð8Þ

that is our primary approximation in the present work. We thus
find an approximate equation from Eq. (7),

w0a rð Þ � w0La ’ �UaðrÞ þ
X

b

Z
dr0cabðr; r0ÞDqbðr0Þ

þ 1
2

X
b;c

Z
dr0
Z

dr00cð3Þabcðr; r0; r00ÞDqbðr0ÞDqcðr00Þ; ð9Þ

where the two-body and three-body direct correlation functions,
cabðr; r0Þ and cð3Þabcðr; r0; r00Þ, have been introduced as [3,6,20,21]

d2ðA� A0Þ
dqaðrÞdqbðr0Þ

�����
L

¼ �cabðr; r0Þ; ð10Þ

d3ðA� A0Þ
dqaðrÞdqbðr0Þdqcðr00Þ

�����
L

¼ �cð3Þabcðr; r0; r00Þ: ð11Þ

Combining Eq. (9) with Eq. (2), we can thus evaluate the radial
distribution functions of the system as
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