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a b s t r a c t

A theoretical scheme to evaluate effective, screened interactions between fragments is proposed within
the framework of the fragment molecular orbital (FMO) method. In this theory, the presence of implicit,
dielectric continuum solvent is not assumed, but only the information on bare, inter-fragment interaction
energies obtained through the FMO calculation for explicit, molecular system is employed. The effective
interactions with inclusion of entropic effect are then described and optimized as a consequence of inter-
fragment correlations on the basis of classical-mechanical many-body theories. Test calculations for a
simple model system and a realistic protein system are performed, and their implications are discussed.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since its proposal in 1999 [1], the fragment molecular orbital
(FMO) method [2–5] has provided a powerful and useful tool to
perform ab initio electronic-state calculations for biomolecular
and other related systems. One of very advantageous features in
the FMO method for biomolecular analyses is its ability to evaluate
‘‘effective interactions’’ between fragments that are usually chosen
to be an amino acid residue or a ligand molecule as a unit
component in the protein–ligand complex system, for instance.
This inter-fragment interaction is referred to as IFIE (Inter-
Fragment Interaction Energy) or PIE (Pair Interaction Energy) in
the literature [2–7], and plays a vital role in, e.g., docking analysis
by specifying important interactions involved in the object system.
In fact, the FMO-IFIE analysis has been extensively applied to the
investigations of mechanisms of molecular recognition associated
with protein–protein [8,9], protein–nucleic acid [10–12], protein–
drug [13–17], and other [18–22] intermolecular interactions.

In many FMO studies performed previously, isolated biomolec-
ular systems in vacuum have often been employed for the calcula-
tions. The inclusion of solvent effect has also been attempted by
explicitly taking into account water molecules as parts of the cal-
culated system [18,23–25]. Then, it has been recognized [26] as a
serious difficulty in the FMO analysis that the calculated IFIEs often
show unrealistically large values in magnitude from biochemical
point of view; the magnitudes of IFIEs do not seem to be screened
appropriately even between distant, charged fragments [8,9], and

the situation is not improved significantly even by the presence
of explicit water molecules surrounding the biomolecules, which
indicates that the current FMO-IFIE analysis somehow overesti-
mates the electrostatic interactions.

One possible solution to overcome this difficulty that the IFIE
values represent a kind of ‘‘bare’’ interactions between fragments
is to consider the dielectric screening effect by solvent or amino
acids contained in the system in terms of dielectric constants for
these screening materials [27,28]. For example, if we consider
the screening effect by water solvent, the effective inter-fragment
interactions would be substantially screened and reduced by about
a factor of dielectric constant of water, i.e., 78. Thus, Fedorov and
Kitaura [26] have recently proposed a computational scheme to
evaluate the effective IFIEs in the FMO calculations, which could
be applicable also to the description of screening effects due to
amino acid residues. However, there are some drawbacks in this
approach in common with other ‘‘implicit’’ solvent models: First,
there are a lot of uncertainties concerning the modeling, approxi-
mation and parameters employed in actual applications. These
ambiguities would further be enhanced when one performs some
hybrid calculations employing both of explicit and implicit sol-
vents simultaneously or dynamical calculations in which a number
of time scales characterizing the screening may be mixed up in the
simulations. In addition, it may be difficult for this implicit ap-
proach to quantitatively describe some of short-range interactions
such as hydrogen-bonding one, which should play an important
role in the context of molecular recognition.

In the present work, we study a way to partially correct the
screening effects in the FMO-IFIE analysis in terms of classical-
mechanical many-body correlations, where there are no ‘‘implicit’’
materials to screen the interactions between fragments. It is
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remarked that the screening effects due to electronic polarization
have already been included in the ‘‘bare’’ IFIE values calculated
with the FMO method. The purpose of the present study is to ex-
plore a methodology to theoretically describe the effective interac-
tions in the FMO calculations only with the use of fragments
composed of explicit atoms. Starting from the IFIE values obtained
through an FMO calculation for an isolated system that may or may
not contain explicit solvent materials such as water molecules, we
attempt to correct the effective interactions by considering the cor-
relation effects between the fragments. We rely on some of theo-
retical techniques developed in the field of classical many-body
problems [29], and thus propose a method to obtain the effective
inter-fragment interactions relevant for a given configuration of
molecular system. In many molecular simulations employing the
FMO method, one often obtains a set of IFIE values for a number
of configurations with and without inclusion of solvent molecules.
The present approach could then provide a useful methodology to
elicit the effective interactions with inclusion of entropic effect for
each snapshot configuration, which may further be averaged sta-
tistically over multiple configurations to obtain the screened in-
ter-fragment interactions realized in actual circumstances.

In the following section, we first develop a theoretical frame-
work to calculate the effective IFIEs in the FMO analysis. Test cal-
culations employing a simple model system and a realistic
protein system are carried out in Section 3, and their implications
are discussed. Concluding remarks are finally given in Section 4.

2. Theory

Let us consider a situation that the (symmetric) inter-fragment
interaction energies (IFIEs) uij (1 6 i; j 6 N) for a system with N
fragments have been given through an FMO calculation. Here, in
the case of biopolymers, the IFIEs for the neighboring (bonding)
fragments (j ¼ i� 1) as well as the diagonal components (i ¼ j)
may be set to be zero by definition [2–7]. Our problem is then to
evaluate effective interactions wij between fragments by consider-
ing the many-body effects associated with the inter-particle (frag-
ment) correlations and various (density, conformational and
energetic) fluctuations in the system. We assume in the following
model that the ‘‘bare’’ interactions uij between the fragments are
fixed as average values irrespective of possible conformational
changes, and the model system may be mapped onto a classical
system with a potential energy,

V ¼
X

i<j

uijninj þ
X

i

lini; ð1Þ

where ni refers to the site density (population) of fragment i and li

is the site energy or external (‘‘confinement’’) potential for fragment
i to keep the average density hnii fixed to be unity. We thus take ac-
count of the inter-fragment correlations not by the fluctuation of
IFIE values uij but by the density fluctuation at site i associated with
possible variations in conformations and energetics of the system.

Each fragment i in this system may be regarded as a classical
particle embedded in the network of mutual interactions. The
effective interaction or the potential of mean force wij is then re-
lated to the pair correlation function hij between the fragments
via [29]

hij ¼ e�bwij � 1: ð2Þ

The parameter b in Eq. (2) is usually related to the absolute temper-
ature T and the Boltzmann constant kB via b ¼ ðkBTÞ�1, but, in the
present formalism, may be regarded as an optimization parameter
to control the degree of screening, which will be specified in the
following.

The pair correlation function hij is related to the direct correla-
tion function cij in terms of the Ornstein–Zernike relation [29]:

hij ¼ cij þ
X

k–i;j

cikhkj: ð3Þ

The direct correlation function is conceptually introduced as a
difference between the total and indirect parts of inter-particle
correlation, and may be expressed, in the Percus–Yevick (PY)
approximation [29] for classical many-body problem, as

cij ¼ e�bwij � e�bðwij�uijÞ; ð4Þ

providing a closure equation to determine wij for a given set of uij.
The procedure above may be formulated as follows. By intro-

ducing the Mayer function [29],

fij ¼ e�buij � 1; ð5Þ

we can rewrite Eq. (4) as

cij ¼
fijðhij þ 1Þ

fij þ 1
: ð6Þ

Substituting this relation into Eq. (3), we find

hij ¼
fijðhij þ 1Þ

fij þ 1
þ
X

k

fikðhik þ 1Þ
fik þ 1

hkj; ð7Þ

or

hij ¼ fij þ ðfij þ 1Þ
X

k

fikðhik þ 1Þ
fik þ 1

hkj: ð8Þ

For given uij and fij, we can obtain hij by Eq. (8), and thus find

wij ¼ �
1
b

lnðhij þ 1Þ: ð9Þ

We refer to this way of evaluating the effective interactions wij as
‘‘PY’’ scheme.

In the formulation above, the effective, screened interactions are
obtained through the inter-fragment correlations in a system with
given set of bare interactions. The origin of the screening may par-
tially be attributed to the conformational fluctuations and associ-
ated entropic effects in the system, but the parameter b should
not be chosen according to room temperature. The energy scale of
IFIEs obtained by single-point FMO calculation is of electronic ori-
gin and hence much higher than that of thermal energy at room
temperature. While the electronic state of the pertinent system is
very sensitive to the conformational fluctuations due to thermal en-
ergy, the relevant value of b in the present screening model should
be independent of the thermal energy associated with the system.
As will be shown in the following sections, the value of b represents
a high energy scale corresponding to the screening by ‘‘fast’’ modes
in the system, and its optimal value can be determined by a ‘‘max-
imum screening’’ ansatz under constraint condition. The statistical
averaging over the thermal motion at room temperature should be
taken separately by generating many conformations for FMO calcu-
lations with, e.g., molecular dynamics simulations.

There is another well-known approximation often employed in
classical many-body theory, that is, the hypernetted-chain (HNC)
approximation [29]. In this approximation, the direct correlation
function is expressed as

cij ¼ e�bwij � 1þ bðwij � uijÞ ð10Þ

instead of Eq. (4) for the PY approximation. We then find

hij ¼ �1þ expf�buij þ
X

k

½hik � lnðhik þ 1Þ � buik�hkjg ð11Þ

instead of Eqs. (7) and (8). We refer to this scheme for obtaining hij

and wij as ‘‘HNC’’ scheme.
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