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a b s t r a c t

We present an optimized linear-scaling purification method for calculation of the density matrix. Tradi-
tional purification polynomials, including those proposed by McWeeny and Holas, are monotonic and
have stable fixed points at 0 and 1. We relax these conditions and develop optimized purification poly-
nomials which achieve maximum reduction in the LUMO eigenvalue and maximum increase in the
HOMO eigenvalue, while heading towards idempotency. We demonstrate that optimized purification
achieves appreciable speedup over traditional purification, which increases with decreasing band-gap.
We also show improvement over non-monotonic purification proposed by Rubensson, while having iden-
tical performance for polynomials of degree 3.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electronic structure calculations, including Hartree–Fock (HF)
and Density Functional Theory (DFT), typically solve for the orbi-
tals through diagonalization [1–11]. However, this approach
results in cubic-scaling with respect to the number of atoms. To
overcome this restrictive scaling, there has been great emphasis
on the development of linear-scaling methods [12–20]. One of
the common approaches to achieve linear-scaling is through the
polynomial expansion of the density matrix, with truncation based
on its decay [15,19]. A particularly efficient method for this expan-
sion is through recursive purification [19], which is the focus of
this letter.

The idempotent density matrix P can be expressed as
P ¼ hðlI�HÞ, where h is the step function, H is the Hamiltonian
matrix, l is the Fermi energy and I is the identity matrix. In the
purification method, a polynomial approximation to the density
matrix is developed through the iterative procedure [19]

X0 ¼ p0ðHÞ;
Xt ¼ ptðXt�1Þ t ¼ 1;2; . . . ; T: ð1Þ

p0 is the initial linear transformation which maps the eigenvalues of
H into the interval ½0;1�. pt are purification polynomials which drive
the occupied eigenvalues of H towards 1 and the unoccupied eigen-
values towards 0, with no change to the eigenvectors. As a conse-
quence, P ¼ limT!þ1XT . In practice, the iteration is stopped once
the matrix is sufficiently idempotent.

The efficiency of the purification method is a consequence of its
recursive nature which allows for polynomial expansions of extre-
mely high degree in comparison to serial polynomial expansions

[21]. The degree of the polynomial required to accurately represent
the density matrix scales as Oð1=fÞ, where f is the ratio of the band
gap to the spectral width of H [15]. By spectral width, we refer to
the magnitude of the difference between the largest and smallest
eigenvalues. Therefore, in a serial polynomial expansion, the num-
ber of matrix–matrix multiplications and consequently the cost
typically scale as Oð1=fÞ. However, due to the recursive nature of
the purification method, its cost scales as Oðlog 1=fÞ [22]. This
makes the purification method highly efficient for studying sys-
tems with small values of f, a situation commonly encountered
in HF and DFT, where the number of basis functions are orders of
magnitude larger than the number of atoms.

The idea of purification was first introduced by McWeeny [23],
who used the mapping pðXÞ ¼ 3X2 � 2X3 to make a sufficiently
idempotent matrix more idempotent. Palser and Manolopoulos
[24] proposed the use of matrix purification as a technique to cal-
culate the density matrix from the Hamiltonian matrix without
diagonalization. This has motivated the development of numerous
purification techniques, which aim to reduce the number of ma-
trix–matrix multiplications required to calculate the density ma-
trix. Holas [25] generalized the McWeeny purification by
developing polynomials of higher degree, to enable higher rates
of convergence. However, this comes at the price of larger number
of matrix–matrix multiplications per purification step. Mazziotti
[26,27] developed generalizations of McWeeny’s formula within
the formalism of the particle-hole duality from the theory of re-
duced density matrices. He also suggested the use of asymmetric
polynomials for purification. Niklasson and coworkers [28,29]
introduced a trace-correcting algorithm using asymmetric purifi-
cation polynomials which does not require a priori knowledge of
the Fermi energy.

The purification polynomials proposed in the above cited
references share some common features. Specifically, they are
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monotonic in the interval ½0;1� and have stable fixed points at 0;1.
We refer to these polynomials as traditional purification polynomi-
als. These conditions have been relaxed recently, with the goal of
further increasing the efficiency of the purification method. Kim
and Jung [30] proposed the use of generalized nonpurifying func-
tions in the first few iterations of the purification to enhance con-
vergence. Rubensson [31] proposed a scaled purification technique
in which he used non-monotonic purification polynomials. He
demonstrated significant speedup over traditional purification
polynomials, which increases with decreasing band gap.

In this letter, we develop a linear-scaling purification method
for calculation of the density matrix. We first define the set of gen-
eralized symmetric purification polynomials where the conditions
of monotonicity and stable fixed points at 0, 1 are not enforced.
Next, we obtain polynomials from this set which achieve maxi-
mum reduction in the LUMO eigenvalue and maximum increase
in the HOMO eigenvalue, while heading towards idempotency.
Subsequently, we propose a purification method which utilizes
these polynomials to calculate the density matrix. Finally, we
validate the accuracy and efficacy of the proposed purification
method through examples.

2. Theory

Consider a Hamiltonian matrix H with ordered (increasing)
eigenvalues km; m ¼ 1;2; . . . ;M. Since the eigenvectors of H are un-
changed throughout, the purification method can be analyzed
through the behavior of the eigenvalues. Let kf < l < kfþ1, where
l is the Fermi energy, kf and kfþ1 are the HOMO and LUMO eigen-
values respectively. Further, let kM � l P l� k1, which is typically
the case in electronic structure calculations. First, the
transformation

bH ¼ l̂
kM � l

ðlI�HÞ þ l̂I ð2Þ

is used to map the eigenvalues of H into the interval ½0;1�. We de-
note the eigenvalues of bH by k̂m; m ¼ 1;2; . . . ;M. Through this
transformation, l is mapped to l̂, the unoccupied part of the spec-
trum is mapped to ½0; l̂Þ, and the occupied part of the spectrum is in
ðl̂;1�. Next, the iteration given by Eq. (1) is used to calculate the
density matrix. The purification polynomials p (dropping the sub-
script t) typically have the following properties. First, they have sta-
ble fixed points at 0;1. Second, they have an unstable fixed point at
l̂. Third, they are monotonic such that for 0 < k̂ < l̂; 0 < pðk̂Þ < k̂
and for l̂ < k̂ < 1; k̂ < pðk̂Þ < 1. As a consequence, repeated appli-
cations of these polynomials will drive the eigenvalues k̂m < l̂ to-
wards 0 and eigenvalues k̂m > l̂ towards 1. In this letter, we focus
on the so called symmetric purification polynomials which satisfy
l̂ ¼ 0:5 and pðk̂Þ þ pð1� k̂Þ ¼ 1 for 0 6 k̂ 6 1.

Consider a matrix having unoccupied eigenvalues in the inter-
val ½0; k̂c� and occupied eigenvalues in ½1� k̂c;1�. For this matrix,
we define the set of symmetric purification polynomials of degree
2K þ 1 as

C2Kþ1 ¼ fpðk̂Þ 2 P2Kþ1 : 0 6 pðk̂Þ 6 pðk̂cÞ < k̂c for 0 6 k̂ 6 k̂c < l̂;

1� k̂c < pð1� k̂cÞ 6 pðk̂Þ 6 1 for l̂ < 1� k̂c 6 k̂ 6 1;

pðl̂Þ ¼ l̂; min
½0;1�

pðk̂Þ ¼ 0; max
½0;1�

pðk̂Þ ¼ 1g; ð3Þ

where P2Kþ1 is the space of polynomials of degree 2K þ 1. In the
special case when k̂c ¼ 0, we have pð0Þ ¼ 0 and pð1Þ ¼ 1. The first
constraint in C2Kþ1 is to ensure that the unoccupied eigenvalues re-
main unoccupied and the second constraint ensures that the occu-
pied eigenvalues remain occupied. The last three constraints ensure
that l̂ ¼ 0:5 is a fixed point, the minimum value attained is 0 and
the maximum value attained is 1. Overall, the constraints guarantee
that the purified eigenvalues occupy the intervals ½0;pðk̂cÞ� and

½pð1� k̂cÞ;1�, where pðk̂cÞ < k̂c and pð1� k̂cÞ > 1� k̂c . As a conse-
quence, repeated applications of these polynomials results in
idempotency.

It is clear that traditional purification polynomials, including
those proposed by McWeeny and Holas, belong to the set C2Kþ1.
However, the polynomials belonging to C2Kþ1 are not required to
be monotonic and have stable fixed points at 0 and 1. Therefore,
C2Kþ1 represents a generalization of traditional purification polyno-
mials. With this notion of purification, we define the optimized
purification polynomial of degree 2K þ 1 to be the solution of the
optimization problem

p�ðk̂Þ ¼ arg max
pðk̂Þ2C2Kþ1

k̂c � pðk̂cÞ
� �

: ð4Þ

Given that the purified eigenvalues occupy ½0;pðk̂cÞ� and
½pð1� k̂cÞ;1�, the optimized purification polynomial achieves maxi-
mum reduction in the intervals occupied by the eigenvalues, while
simultaneously heading towards idempotency.

Since solving Eq. (4) with high accuracy is challenging, we pro-
pose that the optimized purification polynomials have derivatives
of the form

dp�ðk̂Þ
dk̂

¼ c
YK

k¼1

ðk̂� rkÞðk̂þ rk � 1Þ; ð5Þ

where rK 6 rK�1 6 � � �6 r1 < 0:5< ð1� r1Þ6 � � �6 ð1� rK�1Þ6 ð1� rKÞ
are the stationary points of p�ðk̂Þ. The constant c is to ensure that
the polynomial is bounded by 0 and 1 in the interval ½0;1�. The
stationary points fr1; r2; . . . rKg, scaling factor c and the constant of
integration are determined through the constraints

p�ð0Þ ¼ p�ðk̂cÞj0;
p�ðrkÞ ¼ 0; k ¼ 1;3; . . . ;KjK � 1;

p�ðrkÞ ¼ p�ðk̂cÞ; k ¼ 2;4; . . . K � 1jK;
p�ðl̂Þ ¼ l̂:

ð6Þ

Above, the values to the left and right of the vertical line (‘j’) repre-
sent the values of the corresponding quantity for odd and even K
respectively. We have verified numerically that the optimization
problem given by Eq. (4) is indeed equivalent to the problem given
by Eqs. (5) and (6).

For the special case K ¼ 1 and k̂c ¼ 0, we recover McWeeny’s
purification polynomial [23]. For K > 1 and k̂c ¼ 0, we recover
the purification polynomials of higher degree proposed by Holas
[25]. In Figure 1, we plot the optimized purification polynomials
of degree 3, 5 and 7 obtained for k̂c ¼ 0:49. We note that the opti-
mized purification polynomials as defined by Eq. (4) are in general
non-monotonic and do not have stable fixed points at 0 and 1.

Next, we study the efficacy of the optimized purification poly-
nomials. We use the parameter g ¼ ðk̂c � pðk̂cÞÞ=ðk̂c � pðk̂cÞÞ to
judge the efficacy of the purification polynomial pðk̂Þ relative to
the traditional purification polynomial pðk̂cÞ of the same degree.
In Figure 2, we plot g versus k̂c for optimized purification and com-
pare it with the non-monotonic purification proposed by Rubens-
son [31]. For K ¼ 1, we have chosen pðk̂cÞ to be McWeeny’s
polynomial and for K > 1, we have chosen pðk̂cÞ to be Holas’s poly-
nomials. We observe that the optimized purification is significantly
more efficient compared to traditional purification, particularly
when k̂c nears 0:5. We also note that the non-monotonic purifica-
tion of Rubensson has identical performance to the optimized puri-
fication for K ¼ 1. However, for larger K, optimized purification
achieves larger values of g, highlighting its efficacy.

In Algorithm 1, we outline the calculation of the density matrix
using the optimized purification polynomials. Given the Hamilto-
nian matrix H and Fermi energy l, we proceed to calculate the
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