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Nonlocal functionals for the exchange-correlation energy like the weighted density approximation
require evaluating six-dimensional integrals with a Coulomb singularity. The convergence of a straight-
forward grid-based approach is linear in the number of grid points, because grid points where the inte-
grand’s magnitude exceeds a threshold must be neglected. This slow convergence makes extrapolation to

the infinite-grid limit problematic. We introduce an alternative approach, based on basis-set expansion
using either conventional three-dimensional basis functions or explicitly-correlated basis functions.
The approach using explicitly-correlated caussian geminal basis functions converges particularly rapidly.

© 2012 Elsevier B.V. All rights reserved.

1. Motivation

In quantum many-body theory, one often needs to evaluate six-
dimensional integrals with the form,

Wip] = 2//” DK, r)p ()drdr (1)

where p(r) is the electron density. For many interesting choices of
the correlation factor, K(r,r’), this integral cannot be performed
analytically and numerical methods must be used. Six-dimensional
numerical integration is challenging numerically, especially when
the integrand is singular. If one uses the standard approach based
on the direct product of two three-dimensional numerical integra-
tion grids [1], or even a sparse-grid approach using a Smolyak-type
construction [2], the integration grid will include points where the
two particles’ coordinates are the same (r = r’). These points must
be omitted from the numerical quadrature. Omitting these points,
however, results in a quadrature that converges only with the slow
rate of n_j,, where ng;q is the number of grid points. There are other
approaches to these integrals in the literature, including methods
based on short-range/long-range decomposition [2,3], solution of
the Poisson equation by eigenvector decomposition, Green’s theo-
rem tricks, and center-of-mass transformation [4]. In this Letter
we will discuss methods using basis sets, which we believe to be
the most promising technique overall, partly because it makes con-
tact with the computational machinery of conventional molecular
electronic structure theory.
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Our interest in this type of integral stems from density func-
tional theory (DFT), where integrals of this form appear in the
expression for nonlocal exchange-correlation energy functionals,
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is the exchange-correlation hole averaged over the constant-density
adiabatic connection [5,6]. This type of two-point exchange-correla-
tion functional is as old as the weighted density approximation
[7-9] and has recently reappeared in the context of direct correla-
tion function [10-13], exchange-correlation hole functionals
[14-16] and nonlocal density functionals for dispersion [17-23].

2. One-electron basis set approach

We start with a density-fitting basis set, {#7;(r)},*,, containing N,
basis functions. We define an associated potential-fitting basis set,
{&(r) ?ﬁl, as the Coulomb potential of the density-fitting basis
functions,

As long as the density-fitting basis functions are chosen so that
Eq. (4) can be evaluated analytically, the singularity in the integral
(1) can be subsumed in the potential-like basis functions. This is the
key idea of this Letter. It is not new; similar ideas arise throughout
the density-fitting approaches associated with DFT and ab initio
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methods [24-37]. While the space of density-like functions is sep-
arable, and therefore amenable to basis-set expansion, the space
of potential-like functions is not [38-41]. Expanding potentials in
a basis set like Eq. (4) cannot give an expansion that converges in
a strict mathematical sense.

The numerator of the integrand in Eq. (1) is a density-like quan-
tity so we expand it in the density-like basis set,

. 2
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Substituting this expansion into the target integral, (1), gives
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The potential-like basis functions (4) appear naturally here. Denot-
ing the ‘overlap’ between the potential-like and density-like func-

tions as
dr_//” ’71 ) drdr — s, (7)
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gives a compact matrix equation for the integral,

Np Ny
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The only unknowns in this expression are the coefficients of
expansion, L;. These are determined by projecting the density-like
quantity p(r)K(r, r)p(r) onto the potential-like basis set,
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In matrix notation,

K = SLS

10
L=S"'KS' (10)
Substituting the second expression into Eq. (8) gives our working
equation,

1
Wip] = —Tr[KS " (11)
The integrals that define K,,, must generally be done numerically,
but they are nonsingular. In favorable cases, the integrals that de-
fine K, can be done analytically.

Since the point of this procedure is to avoid numerical integra-
tion of singular functions, it is important that the integrals that de-
fine the potential basis functions, (4), and the integrals in Eq. (7)
can be performed analytically. As proposed by Késter [42,43], we
decided to use the Hermite Gaussian functions centered on the
atoms,
op|r-RP?
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which can be rewritten as
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The integrals required can then be efficiently evaluated using the
McMurchie-Davidson methodology [44]. The formulas for the inte-
grals are presented in Appendix A. Our procedure for selecting the
‘angular labels’ and exponents in (13) is explained in Appendix B.
Detailed derivations of the integral formulas are presented in the
Supplementary material.

Motivated by our interest in the weighted density approxima-
tion, we chose to use the exchange hole of the uniform electron
gas to test our approach,

K(r,¥') = h% (kejr — 1))
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Since the exchange hole should be symmetric, we opted to use the
arithmetic mean of kg in this expression,

— (67)'" <—P”3(f) ! Pl/g(‘”) (15)

ke(r, 1) = ke (r) ; ke (r')
The integral in Eq. (1) is an approximation to the exchange energy.
It is a very poor approximation, but this does not matter here be-
cause the purpose is to test the algorithm, not evaluate accurate
energies.

In Figure 1 we plot the error in the exchange energy for various
numbers of basis functions for Helium, Beryllium, and Lithium Hy-
dride. Accurate results were computed by evaluating Eq. (1), with
K(r,r') defined by Egs. (14, 15), using very large six-dimensional
Becke-Lebedev integration grids extracted from the integration
routines we developed for integrals associated with population
analysis [1,45]. The resulting approximation to the exchange en-
ergy is accurate to about 10~ a.u., which is why the computed er-
ror in the basis-set methods in Figure 1 levels off at that level. The
stair-step shape of the curves occurs because we do three runs
with the same maximum degree for the Hermite basis functions,
but increasing numbers of primitive Gaussians with that maximal
degree, before increasing the maximum degree of the Hermite ba-
sis functions further. (See Appendix B for details about the con-
struction of the basis set.) It is more challenging to get good
results for heavier atoms because our routines use primitive
Gaussian functions, not contracted Gaussian functions. Therefore
it requires more sharply-peaked Gaussians to get good results for
Be than for He. Using contracted Gaussian functions would lessen
the cost, but change the trends.

Obtaining reasonable accuracy of 103 a.u. requires between 50
and 100 basis functions. This is prohibitive unless the integral in
Eq. (9) can be evaluated very efficiently.

3. Two-electron basis set approach

The exchange hole depends explicitly on the interelectronic dis-
tance, |r — r'|. In general exchange-correlation holes, and also most
other relevant integrals with the form Eq. (1), have a strong depen-
dence on the interelectronic distance. This suggests using an
explicitly correlated basis set of the form

1i(r, v — 1)) = fi(r)g(jr — r')) (16)

With this type of basis set, all of the previous formulas still hold.
The only difficulty is finding density-like basis functions for which
all the integrals can still be performed analytically. The integrals
can still be performed if the Hermite Gaussian functions in
Eq. (12) are multiplied by a caussian geminal basis function [46-49]
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