
Cell-based interconnect migration by hierarchical optimization

Eugene Shaphir a, Ron Y. Pinter b, Shmuel Wimer c,d,n

a Intel Corporation, Santa Clara, CA, USA
b Technion, CS Faculty, Haifa, Israel
c Bar-Ilan University, Engineering Faculty, Ramat-Gan, Israel
d Technion, EE Faculty, Haifa, Israel

a r t i c l e i n f o

Article history:
Received 14 May 2013
Received in revised form
18 October 2013
Accepted 22 October 2013
Available online 1 November 2013

Keywords:
VLSI design migration
Layout compaction
Interconnects
Design hierarchy
Cell-based design

a b s t r a c t

Fueled by Moore's Law, VLSI market competition and economic considerations dictates the introduction
of new processor's microarchitecture in a two-year cycle called “Tick-Tock” marketing strategy. A new
processor is first manufactured in the most advanced stable process technology, followed in a one-year
delay by introducing chips comprising same microarchitecture but manufactured in a newer scaled
process technology, thus allowing higher production volumes, better performance and lower cost. Tick-
Tock is enabled by the automation of chip's layout conversion from an older into a newer manufacturing
process technology. This is a very challenging computational task, involving billions of polygons. We
describe an algorithm of a hierarchy-driven optimization method for cell-based layout conversion used
at Intel for already several product generations. It transforms the full conversion problem into successive
problems of significantly smaller size, having feasible solutions if and only if the full-chip problem does.
The proposed algorithm preserves the design intent, its uniformity and maintainability, a key for the
success of large-scale projects.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The design of high-end full-custom microprocessors such as
those of Intel, AMD and IBM, is a very complex engineering task,
involving hundreds of man-years efforts. Hierarchical design
methodology is a key in achieving product specifications and
time-to-market requirements, which otherwise could not be
met. Fueled by Moore's Law [1], market competition and economic
considerations dictate the introduction of new processor's micro-
architecture in a two-year cycle, in the so-called “Tick-Tock”
strategy [2] as illustrated in Fig. 1.

The Tick-Tock development strategy delivers every two year a
new microarchitecture manufactured in the most advanced stable
technology. This is called “Tock”. It is then followed in about one-
year delay by a “Tick” phase, delivering chips of the same
microarchitecture as the recent Tock but in a new scaled manu-
facturing process technology, thus allowing higher production
volumes, better performance and lower cost. An essential part of
the Tick phase is the conversion of the underlying physical layout,
comprising billions of polygons, into the new technology. Such
conversion is known in VLSI jargon as hard-IP reuse [3]. An enabler
for meeting this Tick-Tock interlacing is therefore the automation

of chip's layout conversion from older into newer technology. Such
automation is a very challenging computational task, involving
billions of polygons that must satisfy complex geometric rules.

The polygons conversion is carried out by layout compaction
algorithms. Those have been developed since the early days of
VLSI electronic design automation (EDA) and a comprehensive
description of various algorithms can be found in [4,5]. The
compaction describes the positional relations of the polygons of
the source layout aimed at conversion, by a directed graph, called
the constraints graph. Its vertices represent edges of polygons and
arcs represent left-to-right (bottom-to-top) adjacency and visibi-
lity relations. The arcs are assigned weights corresponding to the
minimal sizes and spacing design rules of the new technology. The
problem of sizing and positioning of the polygons in the new
target layout is to find the smallest possible area into which the
layout can legally fit.

The most general form of compaction involves moving the
polygons of the layout in the x- and y-coordinates simultaneously,
called two-dimensional (2D) compaction that was shown to be
NP-complete [13,14]. Compactors therefore decompose the 2D
problem into an alternating sequence of independent one-
dimensional (1D) compaction steps, each changes only one set of
coordinates. 1D compaction can be solved efficiently with longest
path algorithms [4,5]. Polygons not on the critical paths are
positioned such that some cost reflecting a design goal (e.g.,
performance, sensitivity for manufacturing defects, among a few
others) is minimized. A heuristic solution of the 2D problem was

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.vlsi.2013.10.003

n Corresponding author at: Bar-Ilan University, Engineering Faculty, Ramat-Gan,
Israel. Tel.: þ972 3 5317208.

E-mail address: wimes@biu.ac.il (S. Wimer).

INTEGRATION, the VLSI journal 47 (2014) 161–174

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2013.10.003
http://dx.doi.org/10.1016/j.vlsi.2013.10.003
http://dx.doi.org/10.1016/j.vlsi.2013.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.10.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.10.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.10.003&domain=pdf
mailto:wimes@biu.ac.il
http://dx.doi.org/10.1016/j.vlsi.2013.10.003


proposed in [15] where the problemwas first solved by alternating
1D compactions. The layout was then relaxed by introducing extra
jogs into the wires to enable further compression of the layout. In
today's technologies which require high regularity and uniformity
of the interconnecting wires, jog insertions are prohibited since
that result in performance degradation and manufacturing yield
loss. The work in [16] also showed the NP completeness of the 2D
problem and proposed a branch-and-bound search algorithm. It is
suitable for very small layouts, but impractical for the large-scale
problems arising in full-chip compaction. The 2D problem was
studied also in the context of graph-drawing [17,18], leading to
similar consequences on its difficulty. To the best knowledge of the
authors, the EDA industry-scale compactor in [10] is 1D. It allows
the user to control the compaction iterations by specifying an
appropriate parameter to be either x-y-x or y-x-y. Another EDA
compaction tool described in [5] that was used for the layout
migration of a full-scale microprocessor is also 1D.

Traditional compaction algorithms are flat, suited for relatively
small layouts comprising up to a few tens of thousands of
polygons. With the advancement of VLSI technology in the 90s
to integration of few million transistors on a chip, design meth-
odology moved towards more standardization, modularity and re-
use, making chip structure hierarchical. In parallel, design rules
became more complex, which altogether made layout migration a
computation challenge (henceforth we use the terms compaction
and migration interchangeably).

Algorithms and EDA vendor tools supporting hierarchy were
proposed in [6–10]. Compaction creates unique blocks (also called
modules or cells), which cannot be shared and re-used among
different layouts. Therefore, although those compactors maintain
layout hierarchy, the duplication and layout mutation same logic
blocks is a major disadvantage that today's designs cannot afford.
Thus, a new layout migration technology called cell-based compac-
tion is in order. It uses a common, manually designed, standard-
cell library, which is optimized regardless of its instances in the
entire layout. Cell-based migration has the problem of creating a
huge compaction constraints graph incorporating all the instances
of all blocks, which is then translated into a huge optimization
problem whose solution may take days or even weeks of compu-
tation time. This paper reduces the size of the compaction in one
to two orders of magnitude.

The work of [6] was probably the first to address layout
hierarchy. It ensured that the modularity of the target layout will
stay similar to that of the source layout. It could handle efficiently
small layout in the scale of tens to hundreds transistors. It did not
take advantage of the repetitive instantiation of the same cells to
reduce computation complexity, which our work does. This is a
key to efficiently migrate layouts at chip scale.

The work in [7] handled larger blocks comprising hundreds to
thousands transistors and was proven on real IBM design. Its main
drawback is being tailored to control-logic, comprising two-levels

of hierarchies: leaf-cells and the entire block. Moreover, same leaf-
cells in different blocks were in-place compacted, resulting in
various layout mutations of the same logic cell. This prohibits cell-
level electrical characterization, a key for efficient timing analysis.
Rather, timing analysis must take place at transistor-level, a big
design effort overhead. Our work in contrast supports any hier-
archy depth, making it useful for custom data-path and register-
file design styles, comprising many levels of layout hierarchies.
Moreover, our migration flow is cell-based, enabling the usage of
standard-cell library with all the advantages of modular design
and efficient timing analysis.

The authors of [8] claimed for cell-based layout compaction.
Their work emphasized the pitch-matching of cells and heavily
relied on the slicing structure of the layout. This effectively makes
the algorithm useful for two-level place and route layout style as
in [8], but inadequate for other layout styles mentioned above. As
all the other hierarchical compactors, the cells are in-place
compacted, prohibiting the advantages of real cell-based design.

The work in [9] took advantage of the special linear program-
ming matrix form occurring in solving the layout constraints. It
supports hierarchy, but as other works, the leaf-cells are com-
pacted in-place, a drawback mentioned above. It was also proven
on problems comprising only few thousands of variables and
constraints, which is impractical for chip-scale problems.

The above works evolved later into large-scale hierarchical
compaction tools availed by an EDA vendor [10], used successfully
by the industry. Intel used such tools for several process genera-
tions [3,19], from 130 nm, through 90 and 65, to 45 and 32 nm, in
the Tick-Tock cadence shown in Fig. 1. Unfortunately, the tool in
[10] still in-place compacts leaf-cells, thus prohibiting the advan-
tages of a real cell-based design. Moreover, while all past works
worked on the entire flattened layout, thus solving huge problems,
our algorithm is successively solving a series of far smaller
problems, but still exploring the entire solution space.

Interconnect migration addressed in this paper nicely fits the
1D paradigm as illustrated in Fig. 2. Due to the uniform long-
itudinal and latitudinal nature of wires, which are the main
subject of the compaction, there is not much optimality loss
compared to 2D. The transformation applied to wires, whose
target widths are determined prior to compaction. It is an x-shift
of vertical layers and a y-shift of horizontal layers. Shifted wires
are hooked by vias at their ends to perpendicular wires residing in
an adjacent layer below and above. It is therefore straightforward
to maintain connectivity after 1D iteration by stretching the
perpendicular wires to the new coordinate of their ends.

The layout design rules imposed by modern VLSI process
technologies become more and more complex and their number
may reach a few hundreds. Fortunately, the majority of the
increase occurs in the lower layers involving transistors and their
interconnections used within logic cells, whose layouts are
migrated manually.

Fig. 1. “Tick-Tock” marketing strategy.

E. Shaphir et al. / INTEGRATION, the VLSI journal 47 (2014) 161–174162



Download English Version:

https://daneshyari.com/en/article/538406

Download Persian Version:

https://daneshyari.com/article/538406

Daneshyari.com

https://daneshyari.com/en/article/538406
https://daneshyari.com/article/538406
https://daneshyari.com

