
Design of a coarse-grained reconfigurable architecture with
floating-point support and comparative study

Manhwee Jo a, Dongwook Lee b, Kyuseung Han a, Kiyoung Choi a,n

a Department of Electrical Engineering and Computer Science, Seoul National University, 151-744 Seoul, Korea
b Department of Electrical and Computer Engineering, University of Texas at Austin, TX 78712, United States

a r t i c l e i n f o

Article history:
Received 17 August 2012
Received in revised form
11 August 2013
Accepted 16 August 2013
Available online 28 August 2013

Keywords:
Coarse-grained reconfigurable architecture
Floating-point operations

a b s t r a c t

With a huge increase in demand for various kinds of compute-intensive applications in electronic
systems, researchers have focused on coarse-grained reconfigurable architectures because of their
advantages: high performance and flexibility. This paper presents FloRA, a coarse-grained reconfigurable
architecture with floating-point support. A two-dimensional array of integer processing elements in
FloRA is configured at run-time to perform floating-point operations as well as integer operations.
Fabricated using 130 nm process, the total area overhead due to additional hardware for floating-point
operations is about 7.4% compared to the previous architecture which does not support floating-point
operations. The fabricated chip runs at 125 MHz clock frequency and 1.2 V power supply. Experiments
show 11.6� speedup on average compared to ARM9 with a vector-floating-point unit for integer-only
benchmark programs as well as programs containing floating-point operations. Compared with other
similar approaches including XPP and Butter, the proposed architecture shows much higher performance
for integer applications, while maintaining about half the performance of Butter for floating-point
applications.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

With a huge increase of various high-performance multi-media
applications running on a portable device, great attention to
reconfigurable array architectures has been built up since such
architectures can be a key to performance and flexibility [1–6].
According to the granularity, we can classify such architectures
into fine-grained reconfigurable array (FGRA) and coarse-grained
reconfigurable array (CGRA). A representative example of FGRA is
FPGA, which has an array of gates. On the other hand, CGRAs
typically have an array of arithmetic and logic units (ALUs) or
processing elements (PEs). CGRAs have an advantage over FGRAs
in that they can quickly adapt to a new application through
dynamic reconfiguration. It is mainly due to the coarser granular-
ity that renders less configuration overheads.

In spite of the advantages of CGRAs, most of the existing
architectures are limited to integer-based applications such as
audio-visual data codec [7,8], wireless communication [9], crypto-
graphy [10], and so on. Thus they are not able to meet the
demands for floating-point-based applications effectively. Physics
engines in 3-dimensional (3D) graphics are representative exam-
ples that cannot be handled efficiently by a conventional CGRA.

There have been researches on implementing 3D rendering [11,12]
and ray tracing [13] with reconfigurable architectures. However,
their approaches have limitations in generating high quality
results due to the lack of floating-point computation.

Adding floating-point units (FPUs) to the integer-only reconfi-
gurable architecture can be a solution to the above-mentioned
problem. There have been several related researches on FPGAs.
[14] introduces an FPGA including FPUs. [15] shows a design-space
exploration for efficient implementation of floating-point opera-
tions on an FPGA by adding extra modules such as multipliers and
FPUs or by modifying look-up tables (LUTs) for efficient binding.
However, the area cost due to those approaches is significantly
high, especially when multiple floating-point units are added.
Moreover, the added units are not utilized at all when integer-
based applications are running on the system. By the same token,
the integer PEs will be useless when floating-point-based applica-
tions are running.

Another solution to the problem is reconfiguring existing units
such that they can perform the floating-point operations [16–22].
[16] suggests a novel FPGA architecture and efficient implementa-
tion methods of floating-point operations on that architecture.
However, implementing floating-point units using LUTs in FPGAs
requires much more time to reconfigure the circuit than coarse-
grained reconfigurable architecture. Thus it is hard to accelerate
applications mixed with integer operations and floating-point
operations. Coarse-grained reconfigurable architectures support

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.vlsi.2013.08.003

n Corresponding author. Tel.: þ82 2 880 6768; fax: þ82 2 882 4656.
E-mail address: kchoi@snu.ac.kr (K. Choi).

INTEGRATION, the VLSI journal 47 (2014) 232–241

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2013.08.003
http://dx.doi.org/10.1016/j.vlsi.2013.08.003
http://dx.doi.org/10.1016/j.vlsi.2013.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.08.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.08.003&domain=pdf
mailto:kchoi@snu.ac.kr
http://dx.doi.org/10.1016/j.vlsi.2013.08.003


reconfiguration with much less reconfiguration time (one cycle in
our architecture). Thus the processing elements (PEs) in the
architecture can be reconfigured to execute floating-point opera-
tions right after executing integer operations. The approaches in
[17–20] combine a pair of integer PEs to perform a floating-point
operation. Since there are many PEs in an array, it is possible to
perform multiple floating-point operations in parallel. For an
efficient implementation of the floating-point operations, they
use separate FSMs in addition to the configuration of the archi-
tecture. In this paper, we present details of the chip implementa-
tion and experimental results of a coarse-grained reconfigurable
architecture called FloRA (Floating-point-capable Reconfigurable
Array), which supports floating-point operations as well as integer
operations. Since the floating-point operations are performed with
multiple integer PEs, the architecture does not have any separate
floating-point units. This allows the architecture to have extended
applicability with less hardware overhead.

There are other approaches to implementing floating-point
operations exploiting the existing integer functional units in a
CGRA. One of them is PACT XPP [21], a commercial coarse-grained
reconfigurable architecture [22]. Their approach relies only on
configurations of the existing architecture without any additional
hardware support for floating-point operations and thus results in
an inefficient implementation in terms of performance-to-area
ratio. Another approach uses Butter architecture [23–25] where
floating-point operations are implemented using its integer addi-
tion/subtraction units and multiplication units. Those architec-
tures will be compared with our architecture in the later sections.

The organization of the paper is as follows. Section 2 presents
the base hardware architecture of FloRA. Section 3 explains the
design for floating-point operations in detail. Section 4 presents
the characteristics of the chip and other experimental results
obtained from chip test. Section 5 compares the proposed
approach to other similar approaches. Finally, Section 6 concludes
the paper with some future work.

2. Architecture

2.1. Overall hardware architecture

Fig. 1 shows the overall architecture of FloRA. It consists of a
RISC processor, a main external memory block, a DMA controller,
and a reconfigurable computing module (RCM). All the compo-
nents are connected through a data bus. Before executing an
application on the architecture, the RISC processor initializes all

other components in the architecture. It also controls them during
the execution of the application. In addition, it executes control-
intensive and irregular code blocks of the application while the
RCM accelerates data-intensive and repetitive code blocks such as
DSP kernels or matrix-vector calculations, which can be easily
parallelized. The DMA controller is used for efficient communica-
tions between the RCM and the main memory.

2.2. Reconfigurable computing module

The RCM is in charge of accelerating data-intensive code blocks
using an array of PEs. A PE is an ALU-like functional unit that can
handle 16-bit integer values. The PE array is designed for accel-
erating data-intensive kernel code blocks by parallelizing inde-
pendent operations in a code block on the array of PEs. As shown
in Fig. 2, each PE in the array has interconnections to its neighbor
PEs (top, bottom, left, and right). Each PE also has interconnections
to the PEs in two-hop distance in vertical and horizontal direction,
and so on, so that it can communicate directly with other PEs in a
cycle via those interconnections without having to pass through
neighbor PEs one-by-one along the paths. Such abundant inter-
connection resources make it easy to map data-flow graphs onto
the array [26,27].

Each PE can perform arithmetic operations and logical opera-
tions including shift operations and compare and select opera-
tions. Thus a PE can be considered as a small processor without
instruction fetch unit and branch unit. Some operations (critical
operations) such as multiplication and division require functional
units that require much larger area and delay than other opera-
tions. Each of the critical functional units such as multipliers and
dividers is shared by a set of PEs. For this, the executions of those
functional units by the PEs are scheduled ahead of time [2]. Since
the critical functional units typically have longer delays, they are
pipelined so that they do not degrade the overall system through-
put. The number of critical functional units integrated into the
array is much less than the number of PEs, thereby saving much
area and power consumption at the cost of ignorable performance
degradation. In case of division, it is a common practice to change
divisions into shift operations for applications that are not very
sensitive to accuracy. Thus the number of dividers can be further
reduced compared to the number of multipliers.

The PEs are configured by configuration control unit (CCU) and a
set of configuration memory elements (CEs). Configuration Memory in
Fig. 1 is basically an array of CEs. Each CE provides the configuration

Fig. 1. Overall architecture of FloRA, a coarse-grained reconfigurable array archi-
tecture with floating-point capability.

Fig. 2. Interconnection topology in PE Array. Solid line means one-way bus inter-
connects from/to data memory while dotted line means peer-to-peer interconnects.
Each dotted line is physically implemented as two one-way interconnects.

Manhwee Jo et al. / INTEGRATION, the VLSI journal 47 (2014) 232–241 233



Download English Version:

https://daneshyari.com/en/article/538412

Download Persian Version:

https://daneshyari.com/article/538412

Daneshyari.com

https://daneshyari.com/en/article/538412
https://daneshyari.com/article/538412
https://daneshyari.com

