
A column parity based fault detection mechanism for FIFO buffers

Isidoros Sideris n, Kiamal Pekmestzi

School of Electrical and Computer Engineering, National Technical University of Athens, 9 Heroon Polytechneiou, Athens 15780, Greece

a r t i c l e i n f o

Article history:

Received 27 September 2011

Received in revised form

18 January 2012

Accepted 28 March 2012
Available online 10 April 2012

Keywords:

FIFO

Reliability

Fault detection

Column parity

Dynamic verification

a b s t r a c t

This paper presents a low cost fault detection mechanism for FIFO buffers. The scheme is based on

column parity maintenance in a single register, which is updated by monitoring the values written to

and read from the FIFO memory array. A non-zero column parity when the FIFO is empty, constitutes an

indication of fault, and this property is exploited for fault detection. The technique has gains in area,

power and critical path delay, at the expense of (1) greater detection latency, due to the need for the

FIFO to become empty in order to assert a violation and (2) worse Silent Data Corruption (SDC) rate.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

First In First Out (FIFO) memories are used for buffering and
flow control and are indispensable parts of almost every system.
They are widely used in on chip communication fabric, high speed
communication protocol implementations, image/video accelera-
tors [1], multiple channel DMA controllers and coprocessor
interfaces (e.g. Xilinx FSL [2]). What is more, they are extensively
used between different clock domains for synchronization. Mod-
ern multicore processors require different clock domains con-
trolled by Dynamic Voltage and Frequency Scaling (DVFS)
mechanisms to meet the power requirements (maximum Ther-
mal Design Power—TDP) and communication between them is
ensured using FIFOs [3]. Globally Asynchronous Locally Synchro-
nous (GALS) systems [4] extensively use FIFOs. The 48 core Intel
IA-32 chip consists of a lot of FIFOs for communication [5].

Since FIFOs intervene in many system operations, they should
be protected properly to ensure reliable operation. This becomes
more imperative in current and future technology nodes, in which
system failures are becoming more and more dominant. Static
and dynamic variations [6,7] result in unreliable operation. More-
over, aging mechanisms [8] such as NBTI [9], electromigration,
time dependent dielectric breakdown degrade devices and wires
during system’s lifetime and cause faults in the field. Further-
more, soft errors [10] and other types of transient faults affect

reliability significantly. Thus, dependability in vital system opera-
tions is of utmost importance.

Operation in lower voltage, which is more than required to meet
the power constraints, exacerbates devices reliability and process
variation related problems appear more intense. SRAM cells seem to
be much more vulnerable than logic and flip flops [11], since they are
more dense, and their stability greatly depends on the asymmetry of
the threshold voltages of their transistors. In [11] has been reported
that in 12 nm one every few thousands SRAM cells will be faulty (due
to Random Dopant Fluctuations and aging). In [12] the dependence of
SRAM cell probability of failure (pfail) on voltage is shown for 32 nm
technology nodes.

Results show that even in small memory arrays, faults due to
process variation/aging will occur. On the other hand, soft error
resiliency should be ensured. Results also show that combina-
tional logic is less vulnerable to process variation/aging induced
faults (unless the time constraints are very tight). Thus, in this
paper we more focus on array related faults.

All these effects result from scaling. Thus it would be wise to
spend as less resources as possible for protection, otherwise we could
result in canceling the effects of scaling. Information redundancy is a
viable solution for protection in FIFOs, but it comes at the expense of
state overhead and combinational circuit path for encoding/decoding.
Even byte parity, which is the simplest fault detection technique,
imposes a 12.5% state overhead, which is not negligible. What is
more, it imposes critical path (8–9 input XORs in encoding/decoding)
and energy overheads.

In this paper we propose a low cost fault detection technique
for FIFO buffers. It is based on the update of a global parity
register, which stores global parity in a column basis, requiring
only a flip flop and two XOR gates per column. The fault detection

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.vlsi.2012.03.004

n Corresponding author. Tel.: þ30 2107723653.

E-mail addresses: isidoros@microlab.ntua.gr (I. Sideris),

pekmes@microlab.ntua.gr (K. Pekmestzi).

INTEGRATION, the VLSI journal 46 (2013) 265–279

www.elsevier.com/locate/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2012.03.004
dx.doi.org/10.1016/j.vlsi.2012.03.004
dx.doi.org/10.1016/j.vlsi.2012.03.004
mailto:isidoros@microlab.ntua.gr
mailto:pekmes@microlab.ntua.gr
dx.doi.org/10.1016/j.vlsi.2012.03.004


is based on the fact that when the FIFO becomes empty, the
accumulated parity of the data read will be the same with that of
the written and this register should be zero. A non-zero value is
an indication of fault, and this property is exploited for fault
detection. All faults encountered between two empty states
accumulate and are effectively indicated in the column parity
register.

The requirement to wait for the FIFO to become empty, however,
increases the detection latency. Thus, we trade off detection latency
for area, power and critical path overhead reduction.

Due to the unbounded detection latency of the mechanism, it
can be more easily applied in systems with backward error
recovery (BER) schemes or just as a health monitoring mechan-
ism. The technique is easily applicable also in hardware periph-
erals which take input data in communication bursts and cannot
accept new data unless they have processed them.

Besides the errors in memory arrays, this scheme can detect
even addressing problems and metastability related problems in
dual clock domain FIFOs.

In particular, the contributions of this paper are the following:

� A low cost fault detection mechanism for FIFOs is proposed. It
allows for low cost error detection, at the expense of greater
latency. It eliminates the state overhead of standard horizontal
parity codes, while keeping combinational area low and
decreasing critical path overheads and power consumption.
� The mechanism was modeled and synthesized using Verilog

HDL and its area, power and delay overheads were evaluated
thoroughly, and compared to standard parity protection
schemes. Single clock and dual clock domain FIFOs were
considered.
� The mechanism’s fault coverage is analytically estimated.

The remainder of the paper is organized as follows. Section 2
introduces the proposed mechanism and mentions its capabilities
and the involved overheads. Section 3 presents experimental
results regarding the implementation of the proposed technique
in 90 nm ASIC technology, as well as detection latency results in
some example systems. Section 4 presents results regarding the
fault coverage of the mechanism. Finally, Section 5 lists the
related work and Section 6 concludes the paper.

2. Protection mechanism

The protection technique is evaluated both for single clock and
dual clock domain FIFOs. First we describe how the FIFO operates
(in each case) and then we present how the proposed protection
mechanism is incorporated and how it differs from other protec-
tion schemes.

2.1. Single clock domain FIFO

2.1.1. Operation

The FIFO memories are implemented using a dual port mem-
ory and two pointers delimiting a sliding window, in which the
stored entries are kept. In Fig. 1 the pointers push_addr and
pop_addr point to the next location to write and the next location
to read, respectively. Upon each access, the respective pointer is
incremented by 1 (modulo N for N entries FIFO). When both
pointers point to the same location the FIFO is empty, while if
push_addrþ1 equals pop_addr, then the FIFO is full.

Fig. 1 shows the internals of a single clock domain FIFO and its
operation. It has two interfaces, one for the producer (push_req_n,
data_in) and one for the consumer (pop_req_n, data_out). The
producer asserts (low) the push_req_n signal and at the next

positive edge of the clock (clk) the data is written into the FIFO.
The push_addr pointer is incremented by 1, to point to the next
location to write. Fig. 1(b) shows a scenario where the FIFO was
empty and after the push the empty signal was deasserted.
Similarly, the consumer asserts (low) the pop_req_n signal and
at the next positive edge of the clock it can latch the data
(assuming an asynchronous read port interface—in case we use
synchronous SRAM for the read port, then the output is available
at the next positive edge of the clock). The pop_addr pointer is
incremented in the next positive clock edge. Fig. 1(c) shows a
scenario where the FIFO was full and after the pop the full signal
was deasserted.

The error outputs push_error and pop_error (shown in Fig. 1)
are raised when a push is requested and the FIFO is full, or a pop is
requested and the FIFO is empty, respectively.

2.1.2. Protection mechanism

Fig. 2 shows the FIFO of Fig. 1 augmented with the proposed
protection mechanism. The mechanism maintains one single
parity register for the whole memory array, effectively storing
the parity of each column. Normally such parity would need a
read before every write, in order to be updated, which could be a
significant overhead. However, we make use of the FIFO operation
and we update the parity register as follows: At every write we
perform a xor of the value to be written with the parity register
value and we store the new parity (parity_reg¼data_in xor

parity_reg). At every read we perform a xor of the read value
with value of the parity_register (parity_reg¼data_out xor pari-

ty_reg). Thus, we effectively store the parity of the active window.
Whenever this window is empty (the FIFO is empty), the parity
register should be zero, otherwise an error has occurred in some
array bits. Fig. 2(a) shows how this algorithm is incorporated in

Fig. 1. FIFO operation (single clock).

I. Sideris, K. Pekmestzi / INTEGRATION, the VLSI journal 46 (2013) 265–279266



Download English Version:

https://daneshyari.com/en/article/538425

Download Persian Version:

https://daneshyari.com/article/538425

Daneshyari.com

https://daneshyari.com/en/article/538425
https://daneshyari.com/article/538425
https://daneshyari.com

