Signal Processing: Image Communication 26 (2011) 378-389

Contents lists available at ScienceDirect

=

COMMUNICATION

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image = b

Client intelligence for adaptive streaming solutions

Dmitri Jarnikov ***, Tanir Ozcelebi®

@ Irdeto, the Netherlands
b Eindhoven University of Technology, the Netherlands

ARTICLE INFO

ABSTRACT

Available online 21 March 2011

Keywords:

In state-of-the-art adaptive streaming solutions, to cope with varying network condi-
tions, the client side can switch between several video copies encoded at different bit-

IPTV rates during streaming. Each video copy is divided into chunks of equal duration. To
Adaptive achieve continuous video playback, each chunk needs to arrive at the client before its
Streaming playback deadline. The perceptual quality of a chunk increases with the chunk size in

Client intelligence
Modeling decision-making
Internet TV

bits, whereas bigger chunks require more transmission time and, as a result, have a
higher risk of missing transmission deadline. Therefore, there is a trade-off between the
overall video quality and continuous playback, which can be optimized by proper

selection of the next chunk from the encoded versions. This paper proposes a method to
compute a set of optimal client strategies for this purpose.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays many people explore the possibilities for
consuming multimedia over IP networks using Internet
TV, IPTV or Mobile TV solutions. The majority of solutions
on the market use real-time streaming. The advantages of
real-time streaming - real-time content delivery (live events
viewed as they happen) and the ability to play content as
soon as transmission is started — barely balance the burden
on content providers to provide streaming servers and
develop sophisticated techniques for overcoming users’
bandwidth constraints and for traversing firewalls [1]. Also,
traditional streaming lacks scalability, since, in practice, it is
based on unicast (RTP/UDP [2] or proprietary protocols).

Recently, new technologies that employ progressive
download have emerged with the aim of overcoming
weaknesses of streaming while providing a similar quality
of experience (QoE) to end-users. To access content via
progressive download, a user-device makes an HTTP/TCP

* Corresponding author at: Irdeto, the Netherlands and Eindhoven
University of Technology, the Netherlands.
E-mail addresses: d.s.jarnikov@tue.nl,
djarnikov@irdeto.com (D. Jarnikov), t.ozcelebi@tue.nl (T. Ozcelebi).

0923-5965/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.image.2011.03.003

[3] request for (typically consecutive) parts of the content
from the server. Given sufficient pre-roll delay, this
approach enables solutions that require only a standard
web server, guarantee reliable high-quality delivery with-
out data loss and easily cross most firewalls. Moreover,
the use of HTTP allows these solutions to benefit from
proxy caching, which reduces transmission latency and
decreases server/network loads.

The concept of progressive download for delivering
multimedia content has spawned protocols that allow
transmitting content as a set of time-bounded segments
called chunks. Chunks can be separated physically
(a separate file for each chunk of content) or logically
(all content chunks stored in a single file). For protocols
that are based on physically separated chunks, progres-
sive download starts with the client downloading
a description file that contains an ordered list of uniform
resource identifiers (URI) referring to media files (each
containing a single chunk of content) that the client may
consume. Protocols that are based on logically separated
chunks rely on a file format that allows addressing parts
of the content at a number of predefined access points
(time offsets). For such protocols, at the start of the
progressive download session, the client downloads

www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2011.03.003
mailto:d.s.jarnikov@tue.nl
mailto:djarnikov@irdeto.com
mailto:t.ozcelebi@tue.nl
mailto:t.ozcelebi@tue.nl
mailto:t.ozcelebi@tue.nl
dx.doi.org/10.1016/j.image.2011.03.003

D. Jarnikov, T. Ozcelebi / Signal Processing: Image Communication 26 (2011) 378-389 379

a description file that contains the name of the media file
and the rules to create a URI that points to a chunk with a
given time offset. Physical separation can be used with
HTTP Live Streaming [4] and 3GPP adaptive HTTP Stream-
ing [5], whereas Microsoft SmoothStreaming [6] is a
solution example that uses logical separation of chunks.

Since each chunk has a unique address in progressive
download, web caching can be utilized, which makes
progressive download more scalable than streaming.

The progressive download approach poses a big dis-
advantage, i.e. increased delay when bandwidth is insuf-
ficient for timely transmission of content. This is
addressed by [4-6], where multiple copies of the same
content with different bit-rates, spatial/temporal resolu-
tions and/or other encoding characteristics are provided.
Each copy, also called a quality level, consists of a
sequence of time-aligned chunks. A client can switch
between quality levels at run-time on a chunk-by-chunk
basis to react to varying network conditions. Due to its
adaptive nature, this new class of protocols is called
‘adaptive streaming protocols’.

Although adaptive streaming protocols have been
designed for Internet TV, they can also be used in the
IPTV environment. Formally, the main difference between
the two is that Internet TV delivery is done over an un-
managed network whereas IPTV delivers content over a
managed network. Internet TV content, in theory, is
delivered without resource reservation and quality-of-
service (QoS) provisions. In reality, the vast majority of
the currently deployed systems are based on content
delivery networks (CDN), peer-to-peer (P2P) networks or
a hybrid of the two [7]. In these technologies, connections
between the edge-servers and the end-users have no QoS
provisions (‘last mile’ problem), thus making a way to the
use of adaptive streaming protocols to adapt to changing
network conditions. In contrast to Internet TV, IPTV has a
controlled delivery environment, because it is managed
by the service provider. Nevertheless, recent develop-
ments of IPTV solutions that extend to Mobile TV and
home-network, facing a ‘last mile’ problem that is similar
to the Internet TV case. For this reason, adaptive stream-
ing protocols have been also considered for IPTV [8].

The decision-making process on the client device is the
common denominator for existing adaptive streaming
protocols and it is a determining factor for the overall
QoE. With adaptive streaming, it is the responsibility of
the client to observe changing network conditions, predict
the transmission time! for the next chunk from different
quality levels and choose the quality level that minimizes
the risk of late chunk delivery while maximizing the
quality. The main challenge in using adaptive streaming
protocols is making the most appropriate quality level
choice in real-time under given network conditions.

To address this issue, we propose an algorithm that
performs bandwidth measurements and switches between
quality levels trying to maximize the user-perceived quality

! Transmission time is the time from the moment the client dis-
patches an HTTP request for the chunk until the moment the last bit of
the chunk is received by the client.

in the long run. The proposed algorithm may be applied to
solutions that use different delivery methods—IPTV solu-
tions where available bandwidth hardly changes and only
as a result of an additional stream being delivered to the
same household, Internet TV solutions where end-to-end
QoS cannot be guaranteed, Mobile TV solutions where the
bandwidth available to the user changes based on the cell
load and radio-signal interference creates short-term band-
width fluctuations, and IPTV/Internet TV solutions where
the client is connected to the access network via a wireless
network that is generally susceptible to bandwidth fluctua-
tions. Depending on the deployment scenario, the para-
meters of the solution must be tuned.

The proposed algorithm can be deployed on PCs and
consumer electronics (CE) devices. The latter is particu-
larly important in the view of the growing demand for
mobile video TV and services [9] along with the increasing
number of Internet-connected TVs and set-top boxes.

The paper is organized as follows. Section 2 describes
the challenges in choosing the right quality level in
adaptive streaming. Section 3 describes the proposed
strategy for switching between quality levels. Section 4
outlines the experimental setup and presents the evalua-
tion results. Finally, Section 5 presents conclusions.

2. Adaptive streaming challenges

In classical video streaming, at the server side, video
encoding is typically done without any consideration of
changing network conditions. The rate control algorithms
of the state-of-the-art reference encoders typically main-
tain a mathematical model of the decoder input buffer
and try to encode video at a constant bit-rate (CBR). Given
a fixed channel throughput and a decoder buffer size, this
enables encoders to guarantee continuous playback of
video at the receiving side. For example, the hypothetical
reference decoder (HRD) [10] and the video buffering
verifier (VBV) [11] models are used by the AVC/H.264
and MPEG reference encoders, respectively. HRD and VBV
are based on the leaky bucket model, and they assume that
video to be streamed is drained by a CBR channel with a
rate equal to the video encoding bit-rate. The goal is to
avoid buffer violations (underflows and overflows) caused
by implicit bit-rate variations in the encoded bit-stream.
At the encoder, the leaky bucket model simulates that the
bits arrive at the input buffer of the decoder continuously
and at a constant rate, complying with the CBR channel
assumption. On the other hand, bits are removed from the
decoder input buffer at a variable rate, depending on the
size of the current frame to be decoded.

In a real streaming scenario on a best-effort network,
this approach is not very accurate. Firstly, the CBR channel
assumption of HRD and VBV models holds only if the
network infrastructure provides guaranteed QoS, which is
not the case for best-effort networks. In practice, the
channel throughput varies over time due to competing
traffic, changing to a different routing path, or, even,
switching between different content sources [4]. This
may cause increased data delays or data loss, resulting
in decoder buffer underflow or overflow and leading to
unwanted pauses and QOE loss. Secondly, the buffer size

Download English Version:

https://daneshyari.com/en/article/538482

Download Persian Version:

https://daneshyari.com/article/538482

Daneshyari.com

https://daneshyari.com/en/article/538482
https://daneshyari.com/article/538482
https://daneshyari.com

