
Reducing leakage power with BTB access prediction

Roger Kahn, Shlomo Weiss �

Department of Electrical Engineering—Systems, Tel Aviv University, Tel Aviv 69978, Israel

a r t i c l e i n f o

Article history:

Received 15 June 2008

Received in revised form

13 May 2009

Accepted 15 May 2009

Keywords:

Computer architecture

Microprocessors

Branch prediction

Dual voltage scaling

Leakage power

a b s t r a c t

This paper investigates three architectural methods to reduce the leakage power dissipated by the BTB

data array. The first method (called here window) periodically places the entire BTB data array into

drowsy mode. A drowsy entry is woken up by the first access in the time interval and remains active for

the remainder of the interval (window). There is an associated performance loss which is related to the

size of the window, since there is a delay when a specific line must be woken up. The second method,

awake line buffer (ALB), limits the number of active BTB entries to a predetermined maximum. While

this reduces power dissipation it comes with a performance penalty that is relative to the size of the

buffer. ALB, however, reduces the power dissipation of the data array more than the window method.

The third method, 2-level ALB (2L-ALB), uses a two level buffer with the identical number of combined

entries as the previous method. This method exploits the fact that many branches operate numerous

times in a fixed sequence. By predicting the next BTB access, 2L-ALB achieves further reduction in

leakage power without incurring any further performance loss, compared to the ALB method.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since more powerful microprocessors are being put into
devices with small form factors such as laptop computers and
various consumer electronic appliances, power dissipation will
continue to be a driving force in computer architecture research.
In modern CMOS technology there are two elements of power
consumption, dynamic (or switching) power and leakage power
caused by leakage current from CMOS transistors. Leakage
power dissipation is a significant factor in the total power
dissipated by microprocessors [10]. As a result, a substantial
research effort has been spent in investigating methods that
reduce leakage power [29,31,33].

Branch target buffers (BTB) [13,19] provide early target
information in speculative processors (during instruction fetch)
and are an integral part of the branch prediction mechanism
found in modern microprocessors. Power used by branch
predictors is significant [9]. The branch prediction mechanism
typically dissipates about 7% and as much as 10% of the
processor’s power, and the BTB typically dissipates about 7

8 of
the power dissipated by the branch predictor overall [18].

In our work we studied three architectural methods for
reducing leakage power in the BTB data array. Since the BTB is
organized as a cache memory we use the drowsy cache circuit
primitive from [5,12]. This circuit, called dual voltage scaling
(DVS), reduces the leakage power dissipated by the cache. Two

supply voltages are provided to the cache line, one for the awake
mode and one for the drowsy mode. The supply voltage is changed
when changing between states for the specific cache line. In this
design the high leakage power is only relevant when the line is
awake and not when the line is drowsy. The reduction of the
leakage power to the cache line is around 90%. When a cache line
is placed into drowsy mode the data contents are not lost;
however, there is a cost of one clock cycle involved in waking up
the cache line to enable an access and some power dissipated to
wake up the line. According to [5] the power dissipation to wake
up the cache line is very low. All three of the architectural
methods that we studied are based on this circuit primitive.

We studied the effects of reducing the leakage power of the
data array of the BTB using the three methods described below. In
order to minimize the performance impact we keep the entire
tag array awake. The data array consumes a majority of the power
of the BTB so the power reduction is still significant.

This paper makes three contributions toward leakage power
reduction in a BTB.

First we present the effect of using a fixed size window for a
BTB. With this method (called here window) we simply turn off
at fixed intervals all the lines of the data array of the BTB. This
method was first introduced in [12] for a cache memory. The
effect of this policy on performance when applied to a BTB was
not presented in [12] however. Hence our first contribution is the
evaluation of the window policy when used in a BTB.

Our second contribution is the introduction of a new method,
which we call awake line buffer (ALB), for reducing the BTB leakage
power. ALB employs a buffer of size n that represents the
maximum number of entries in the data array that can be awake.

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2009.05.001

� Corresponding author. Tel.: +972 3 640 7400; fax: +972 3 640 7095.

E-mail address: weiss@eng.tau.ac.il (S. Weiss).

INTEGRATION, the VLSI journal 43 (2010) 49–57

www.sciencedirect.com/science/journal/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2009.05.001
mailto:weiss@eng.tau.ac.il


This buffer contains a list of the locations in the BTB that are
awake. In the event that the buffer is full and another line needs to
be woken up, a victim is selected randomly among the lines
already awake to be placed into drowsy mode. We evaluate the
performance and power impact of this method.

Our third contribution is the introduction and evaluation
of another new method, which we call 2-level ALB (2L-ALB), for
further reducing the BTB leakage power. The 2L-ALB uses a two
level buffer. The maximum number of data lines that are awake is
the same as in ALB. However, due to the structure of the buffer our
simulations show that on average the number of lines awake is
from 25% to 33% less than for ALB without any appreciable change
in performance. This method introduces the concept of access

prediction for a BTB, where a prediction is made of the next BTB
line that will be accessed. The exact sequence and logic used for
this type of access prediction is explained in more detail in Section
2.3. This is different from the traditional function of the BTB which
is to provide a predicted target address for a specific branch
address.

The rest of the paper is organized as follows. Section 3 contains
our simulation parameters and methodology. Sections 2.1, 2.2, 2.3
present the window, ALB, and 2L-ALB methods, respectively, and
their power performance results. Section 4 contains a discussion
comparing the impact of the methods that we studied and the
impact of combining two of these methods that we studied.
Section 5 reviews related work on the subject of leakage power
reduction, cache prefetching prediction. Our conclusions are in
Section 6.

2. Reducing leakage power dissipation of the BTB

In this section we present the three methods that we
investigated for reducing the leakage power of the BTB.

2.1. Window

We studied the effect of switching all of the BTB data
lines into drowsy mode at fixed intervals. We did this test
at intervals of 500, 1000, 2500, 5000, 10 000, and 20 000 cycles.
We see that increasing the interval reduced the performance
penalty, however, the power dissipation increases since the
number of lines that are awake on average are higher at the
end of each window. Fig. 1 shows the performance penalty
and the percentage power reduction on average of the BTB data
array for this method. Measurements are taken by counting the
number of data array lines that are awake at the end of every
window.

2.2. Awake line buffer

We studied the effect of limiting the maximum number of BTB
lines that are awake at any time to a predetermined maximum. In
the event that the maximum number of entries are already awake
and there is a need to wake up a new entry, then another entry
already awake must be placed into drowsy state. An SRAM buffer
is maintained whose size is equal to the maximum number of
lines that are to be left on. The width of each entry is log2 m bits
for an m-entry BTB. In all the experiments reported in this paper
m was set to 512. We studied the effects of setting the maximum
number of awake lines at 32, 64, and 128 entries. We discuss the
results in the next section after introducing the 2-level ALB.

2.3. Predicting BTB access with the 2-level awake line buffer

In this section we introduce a novel method 2-(level awake line

buffer or 2L-ALB) that reduces power dissipation without sacrifi-
cing performance compared to the ALB method described above.
The 2L-ALB is similar to ALB in the overall concept of limiting the
maximum number of BTB lines that are awake at any time to
a prescribed maximum. However, the similarity between the
two methods ends here. The 2L-ALB method exploits the fact
that there are often sequences of branch instructions that are
repeated (like program loops). If access prediction can be realized
(predicting which BTB entry will be accessed next), then we can
prevent that BTB entry from being placed into the drowsy state
during such a sequence. When a line that is likely to be used
shortly is not placed into drowsy mode then the one cycle penalty
necessary (in the circuit primitive that we used [5,12]) to wake up
the line when needed again is eliminated. This improvement
makes up for the fact that although less lines in the BTB are left
awake due to the nature of this design that will be described
shortly, performance as measured in instructions per cycle (IPC)
on average is not sacrificed.

The buffer of size n, which is a power of two, used in the
implementation of this method is divided into two parts as shown
in Fig. 2. The number n is the maximum number of lines that can
be awake. The buffer contains an ‘‘upper’’ level part (upper level

buffer or ULB) consisting of n=2 direct-mapped entries which
contain a pointer to BTB entries that are currently awake. A BTB
entry that is pointed to by an entry in the ULB cannot be placed
into drowsy mode. The format of the entries in this buffer is
shown in Fig. 3. Each entry in the ULB maps to a specific set of BTB
entries. The number of BTB entries mapped to by a single ULB
entry depends on the ratio between the size of the BTB and the
size of the ULB.

The buffer also contains a ‘‘lower level’’ component (lower level

buffer or LLB) consisting of n=2 SRAM entries which are log2 m bits

ARTICLE IN PRESS

0
10
20
30
40
50
60
70
80

500 cycle 1000 cycle 2500 cycle 5000 cycle 10000 cycle 20000 cycle

%
 P

ow
er

 S
av

in
gs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

%
 IP

C
 re

du
ct

io
nPower Savings % IPC penalty

Fig. 1. Performance penalty and power reduction for the BTB data array when using the window method to reduce leakage power dissipation.

R. Kahn, S. Weiss / INTEGRATION, the VLSI journal 43 (2010) 49–5750



Download	English	Version:

https://daneshyari.com/en/article/538488

Download	Persian	Version:

https://daneshyari.com/article/538488

Daneshyari.com

https://daneshyari.com/en/article/538488
https://daneshyari.com/article/538488
https://daneshyari.com/

