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a b s t r a c t

This paper presents a method of using a parity prediction scheme for detecting erroneous outputs in bit-

parallel, sequential, and digit-serial Gaussian normal basis (GNB) multipliers over GF(2m). Although all-

type NB multipliers have different time and space complexities, our analytical results indicate that all-

type GNB multipliers have the same structure if they use parity prediction function. For example, in the

field GF(2233), we have estimated that the error detection rate for a sequential multiplier is nearly 100%

if a comparison is made as per clock cycle. Our analytical results also show that the area overhead of the

proposed digit-serial multiplier with concurrent error detection does not exceed 5%. Several efficient

parity prediction techniques will be shown in this work to provide a low overhead solution to

concurrent error detection particularly when the cryptography implementations using GF(2m)

multiplier require higher reliability and the protection against adversarial attacks.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Arithmetic operations in finite (Galois) fields have received
attention because of their important and practical applications in
the areas of error correcting code, digital signal processing and
public key cryptosystems [1–3]. In the basic arithmetic operations
over GF(2m), multiplication is the most important, complex, and
time-consuming operation. In the binary field GF(2m), there are
three major representations, including polynomial basis, dual
basis, and normal basis. Various GF(2m) multipliers have received
the most attention in the literature [4–9]. For cryptographic
applications [10,11], the field size can be in the range of 160–2048
bits. Considering the structure of bit-parallel multipliers applied
in cryptographic devices, the circuit space requires more than a
million transistors, and it may lead to some kinds of computation
faults in the field. Therefore, an efficient multiplier with
concurrent error detection (CED) capability is required to improve
the reliability of cryptographic operations.

The side-channel attacks using the techniques of power analysis
and differential fault analysis will typically deliberate fault injection
into cryptographic devices. These devices require a small amount of
side-channel information to break common ciphers. Boneh et al.
[12] firstly announced a fault-based side-channel attack against
asymmetric cryptosystems. Biham and Shamir [13] developed a
differential fault analysis that exploits faulty computing to find
cryptographic keys for breaking Data Encryption Standard (DES)
later. Anderson and Kuhn [14] showed that the fault-based side-

channel attacks are also available for software implementations of
encryption algorithms. Messerges et al. [15] proposed effective
power analysis attacks for modular exponentiation algorithms.
Furthermore, Coron [16] extended differential power analysis
attacks to Elliptic Curve Cryptosystems (ECC) and even any scalar
multiplication algorithms. The faulty outputs of cryptographic
devices can lead to an active attack. Hence, effective and simple
methods for protecting the encryption/decryption circuitry from an
attacker are required to ensure that cryptographic devices can
output accurate signatures. Many error detection schemes have
been developed for symmetrical [17,18] and asymmetrical crypto-
systems [19,20] to output confirmed results.

The parity prediction scheme is basically popularized to
monitor the behavior of a circuit during its normal operation
and to indicate the deviations from correct functioning. Quality
assessment of concurrent test methods relies on several factors,
including the model of detectable errors, the worst-case detection
latency, and the incurred area overhead. In the progress of fault-
tolerant cryptographic computations over finite fields, several CED
methods have been proposed for both bit-parallel and bit-serial
circuits. Fenn et al. [21] proposed bit-serial multipliers in GF(2m)
using a parity prediction scheme in which the fields are defined
using irreducible all-one polynomials. Unfortunately, irreducible
all-one polynomials are very rare. To overcome this problem,
Reyhani-Masoleh and Hasan [22] provided error detection
methods for bit-parallel and bit-serial polynomial basis multi-
pliers in the generic field of GF(2m). A bit-parallel systolic dual
basis multiplier with CED was then presented by Lee et al. [23].

The major advantage of the normal basis (NB) multiplication is
that the squaring of the element in GF(2m) could be implemented
simply through the right cyclic shifting of its coordinates. Various

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2009.07.002

� Tel.: +886 2 82093211x5710; fax: +886 2 82093211x5707

E-mail address: PP010@mail.lhu.edu.tw

INTEGRATION, the VLSI journal 43 (2010) 113–123

www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2009.07.002
mailto:PP010@mail.lhu.edu.tw


ARTICLE IN PRESS

NB multipliers over GF(2m) have been developed in [24–26]
depending on the key function to implement efficient bit-parallel
and bit-serial architectures. The other approach is suggested by
Feisel et al. [27]. This scheme uses a special primitive element called
a Gauss period to generate a normal basis of GF(2m). This normal
basis is called the Gaussian normal basis (GNB), which exists for
every positive integer m not divisible by 8. Many standards, such as
ANSI X9.62 [28], FIPS 186-2 [11] and IEEE Standard 1363–2000 [10],
include the GNB concept. In order to achieve efficient hardware
implementations, Trujillo et al. [29] present a hardware design for
the GNB multiplier over GF(2163). In [30], Reyhani-Masoleh proposed
GF(2m) multiplication algorithms and architectures using type-t

GNBs. To the best of our knowledge, no previous article addressed
the issue of error detection in a GNB multiplier. This article thus
firstly tries to investigate the fault detection architectures in a GNB
multiplication over GF(2m). In this paper, the proposed sequential,
bit-parallel, and digit-serial multipliers with CED capability adopt
the parity prediction scheme. Analytical results show that the extra
area overhead for the proposed digit-serial multiplier with con-
current error detection does not exceed 5%. Efficient parity
prediction techniques are given to provide a low overhead solution
to concurrent error detection in the situation of cryptography
implementations using GF(2m) multiplier requiring higher reliability
and protection from adversarial attacks.

The organization of this article is as follows. In Section 2,
Gaussian normal basis representation and its multiplication
algorithm are discussed. Section 3 presents bit-parallel and
sequential multipliers. Fault detection architectures in GNB
multipliers are then considered in Section 4. Section 5 introduces
the proposed digit-serial GNB multiplier using multiple parity
prediction schemes. In Section 6, we will analyze the probability
of error detection and the time/space overheads. Finally, Section 7
offers some concluding remarks.

2. Preliminaries

2.1. Gaussian normal basis representation

It is commonly known that the finite field GF(2m) can be
viewed as a vector space of dimension m over GF(2). If the trace
function tr(a) is satisfied by trðaÞ ¼

Pm�1
i¼0 a2i

¼ 1, a is then called a
normal element of GF(2m). For AAGF(2m), we can represent as
A ¼ a0aþ a1a2 þ � � � þ am�1a2m�1

¼ ða0; a1; � � � ; am�1Þ, where the
coordinates aiAGF(2) for 0rirm�1, and N1 ¼ fa;a2; . . . ;a2m�1

g is
the normal basis (NB) of GF(2m). In hardware implementation, the
squaring of A can be easily performed by a right cyclic shift, i.e.,
A2i

¼ ðam�i; am�i�1; . . . ; am�iþ1Þ.

Definition 1 ((Feisel et al. [27]).). Let p ¼ mt+1 be a prime number
and gcd(mt/k,m) ¼ 1, where k denotes the multiplicative order of 2
module p. Let g be a primitive (mt+1)th root of unity in some
extension field of Fp. A Gauss period of type (m,t) over Fp is
defined as a ¼ gþ g2m

þ � � � þ g2mðt�1Þ

.
By employing a in Definition 1, we generate a normal basis

N1 ¼ fa;a2; . . . ;a2m�1

g for GF(2m). Such a normal basis is called the
Gaussian normal basis of type (m,t), denoted by GNB of type t.
Significantly, GNBs exist for GF(2m) whenever m is not divisible by
8. Each element A ¼ a0aþ a1a2 þ � � � þ am�1a2m�1

of GF(2m) can
also be given as

A ¼ a0ðgþ g2m

þ � � � þ g2mðt�1Þ

Þ þ a1ðg2 þ g2mþ1

þ � � � þ g2mðt�1Þþ1

Þ

þ � � � þ am�1ðg2m�1

þ g22m�1

þ � � � þ g2mt�1

Þ ð1Þ

Observing the above equation, the normal basis N1 could be
converted by the set N2 ¼ fg; g2m

; . . . ; g2mðt�1Þ

; g2; g2mþ1

; . . . ;

g2mðt�1Þþ1

; . . . ; g2m�1

; g22m�1

; . . . ; g2mt�1

g. From gp
¼ 1, the set N2 can

then be translated into the redundant basis N3 ¼ {g, g2,y, gp�1}.
For example, type-1 GNB can be represented by the set {g,
g2,y, gm}. Therefore, from the redundant basis representation, the
normal basis element A ¼ (a0, a1,y, am�1) can be represented by

A ¼ aFð1Þgþ aFð2Þg2 þ � � � þ aFðp�1Þgp�1 ð2aÞ

where

Fð2i2mj mod pÞ ¼ i;0rirm� 1;0rjrt � 1: ð2bÞ

The function F(x) ¼ i in (2b) is mapped from x into i if x is
satisfied by the form 2i2mj. For example, let m ¼ 5 and t ¼ 2, then
p ¼ 11 is prime. The value x ¼ 10 can be represented by the form
x ¼ 2025 mod 11; thus, we have F(10) ¼ 0. Analogically, F(1) ¼ 0,
F(2) ¼ 1, F(3) ¼ 3, F(4) ¼ 2, F(5) ¼ 4, F(6) ¼ 4, F(7) ¼ 2, F(8) ¼ 3
and F(9) ¼ 1. Using (2b), the basis conversion from the GNB to the
NB is described in the following two steps [39]:

Step 1. (a0,y, a0,y, am�1,y, am�1)’(aF(1), aF(2),y, aF(p�1)),
Step 2. (a0, a1,y, am�1)’(a0,y, a0,y, am�1,y, am�1).

2.2. Conventional GNB multiplication

Let A ¼ (a0, a1,y, am�1) and B ¼ (b0, b1,y, bm�1) indicate two
normal basis elements in GF(2m), and C ¼ (c0, c1,y, cm�1)AGF(2m)
represent their product, i.e., C ¼ AB. Assume that both elements A

and B are represented by the GNB if the sequence F(1), F(2),y,
F(p�1) is defined by (2b), and p ¼ mt+1 is prime. The first
coordinate of product C can be calculated using the following
formula [10]:

c0 ¼
Xp�2

k¼1

aFðkþ1ÞbFðp�kÞ ð3Þ

According to gp
¼ 1, the squaring of an element A in (1) is

carried out by a simple permutation. From the GNB representation
in (1), we can use a simple permutation to obtain the redundant
basis in (2). Thus, the squaring of an element A in (2) is given by

A2 ¼
Xp�1

i¼1

aFði2 mod pÞgi: ð4Þ

Using the function F(x) in (2b), if F(x) ¼ k, we will have

Fðx2 mod pÞ ¼ kþ 1 mod m: ð5Þ

For example, let m ¼ 5 and t ¼ 2, we have F(9) ¼ 1 and
F(92 mod 11) ¼ F(7) ¼ 2. In (3), c0 is the first coordinate of product
C ¼ AB. Applying (4) and (5), c1, the first coordinate of product
C2
¼ A2B2, is obtained by cycling the subscripts modulo m in the

formula for c0. Therefore, applying (3), a type-t GNB multiplication
for an even t is addressed as follows.

Algorithm 1. (type-t GNB multiplication for t even) [10]

Input: A ¼ (a0, a1,y, am�1) and B ¼ (b0, b1,y,bm�1)AGF(2m), and

Q ðX;YÞ ¼
Pp�2

k¼1 xFðkþ1ÞyFðp�kÞ

Output: C ¼ (c0,c1,y, cm�1) ¼ AB

1. X ¼ A and Y ¼ B

2. for j ¼ 0 to m�1 {
3. cj ¼ Q(X,Y)
4. X ¼ X51 and Y ¼ Y51
5. }
6. output C ¼ (c0,c1,y,cm�1).
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