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Signal processing issues in diffraction and holographic 3DTV
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Abstract

Image capture and image display will most likely be decoupled in future 3DTV systems. Due to the need to convert

abstract representations of 3D images to display driver signals, and to explicitly consider optical diffraction and

propagation effects, it is expected that signal processing issues will be of fundamental importance in 3DTV systems. Since

diffraction between two parallel planes can be represented as a 2D linear shift-invariant system, various signal processing

techniques naturally play an important role. Diffraction between tilted planes can also be modeled as a relatively simple

system, leading to efficient discrete computations. Two fundamental problems are digital computation of the optical field

arising from a 3D object, and finding the driver signals for a given optical display device which will then generate a desired

optical field in space. The discretization of optical signals leads to several interesting issues; for example, it is possible to

violate the Nyquist rate while sampling, but still achieve full reconstruction. The fractional Fourier transform is another

signal processing tool which finds applications in optical wave propagation.
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1. Introduction

Regardless of the algorithmic, representational,
and technological choices made for the acquisition,
transmission, and display of three-dimensional (3D)
visual signals, optics is expected to play a more
important role in holographic 3D television (3DTV)
than it does in conventional display technologies
such as cathode ray tubes and liquid crystal
displays, or cinematic projection. This is because
the creation of a 3D image, or the illusion of it,
depends on the manipulation of light for the
purpose of synthesizing desired spatial light dis-
tributions. The analyses of the underlying processes

will almost certainly involve explicit consideration
of diffraction and related phenomena.

The image capture and image display steps will
most likely be decoupled in future 3DTV systems.
The captured 3D scene and object information will
be stored or transmitted in convenient forms. Then
the viewer at the display-end will access the abstract
3D information in an interactive fashion. Finally,
the abstract data will be converted to signals that
will drive the optical display.

As a consequence of this decoupled approach and
the need to convert abstract representations to
driver signals, as well as the need to explicitly
consider diffraction and propagation effects, it is
expected that signal processing issues will play a
fundamental role in 3DTV systems. The purpose of
this paper is to identify and revisit some of the key
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signal processing issues in holographic 3DTV. The
formulation of diffraction phenomena, forward and
inverse problems in holographic 3DTV, discretiza-
tion issues, and the use of the fractional Fourier
transform are the main subjects covered in this
paper.

2. Relationships between diffraction and basic signal

processing tools

2.1. Review of diffraction from a systems point of

view

It is well known that scalar monochromatic
diffraction in homogeneous media can be exactly
represented as a linear shift-invariant (LSI) system
[7]. Based on the well-established plane-wave
decomposition technique, which is equivalent to
Fourier decomposition, we can write
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where cðx; y; zÞ is the 3D coherent optical field, and
c2DZ
ðx; yÞ is its 2D cross section at z ¼ Z. Since only

the positive square-root is included in the super-
position above, it is implied that the plane-wave
components are propagating along the positive
z-direction. Furthermore, only the propagating
waves are included in the superposition, and there-
fore, the evanescent wave components are assumed
to be zero. The output function c2DZ

ðx; yÞ is the
diffraction pattern over a planar 2D surface, arising
from an input object transparency mask tðx; yÞ
located at z ¼ 0. Tðkx; kyÞ is the Fourier transform
of tðx; yÞ. Restriction of the superposition only to
propagating waves and the corresponding restric-
tion of the domain of integration to the indicated
circle imply that the mask tðx; yÞ is a low-pass
function, and therefore, does not generate any
evanescent wave components. Incidentally, this is
always the case when there is no physical mask, but
the 2D field tðx; yÞ is obtained simply by taking
the cross section of a 3D field which is composed
of propagating waves. kx and ky are the spatial
frequencies along the x and y axes, respectively. The
monochromatic light wavelength is l, and k ¼ 2p=l.
Therefore, the transfer function of the 2D LSI

system is exp½ jZðk2
� k2

x � k2
yÞ

1=2
�. Surprisingly, it is

quite difficult to find the inverse Fourier transform
of this function in texts or tables. However, it has
been proven by Sherman [29] that the inverse
Fourier transform (i.e., the impulse response of
the system representing the diffraction of light) is
the kernel of the well-known first Rayleigh–Som-
merfeld solution [7]. For distances Z, which are
large compared to the wavelength, the impulse
response reduces to the well-known kernel asso-
ciated with a spherical wave emanating from a point
source:
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We can rewrite Eq. (1) compactly as
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A simulation of the diffracted field as a function
of Z, based on the exact formula given by Eq. (1)
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Fig. 1. Simulation of diffraction for a 1D double slit object. We

chose X ¼ 8l, which is the physical size of a pixel along the

transversal (vertical) direction, with N ¼ 2048 pixels in both

directions. The slit widths are equal and 105 pixels wide, with a

slit separation of 90 pixels. The physical size of a pixel along the

longitudinal (horizontal) direction is 20 times greater than that in

the transversal direction. Therefore, the physical horizontal axis

is visualized 20 times compressed compared to the vertical axis,

for better viewing. The authors thank G.B. Esmer for conducting

the simulation.
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