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a b s t r a c t

Error-diffusion (ED) is one conventional halftoning technique that converts a gray-level image into a half-
tone. For further processing the ED halftones, it is often necessary to estimate the original image from the
halftone: the inverse of ED. We propose to calculate iterated conditional modes (ICM) for the maximum a
posteriori (MAP) solution of inverse ED. The ICM always searches for a better estimate in the valid image
space. It requires only local computation and is applicable to any type of the MRF model used for the ori-
ginal gray-level images. Experimental results for common standard images are given to show that our
ICM performs well and is more flexible than the descent-projection (DP) approach.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In modern communication system, the multimedia signal,
especially the image signal, plays an important role and becomes
more and more popular. In the system, the image can be present
in the form of halftones, for example, under the circumstance
where the printing or displaying of images is required and the
number of inks or colors in the printing/displaying devices is
small. A halftone is the output of the process called halftoning
that converts a given continuous-tone image into an image with
very limited number of levels, for example, binary [2]. A halftone
is hence a state-resolution reduced version of the original contin-
uous-tone image. It is just one visual approximate of the original
image and is too rough to be used for further processing in many
applications. These applications can include re-halftoning with
different dot patterns or dot sizes, resizing the image, enhancing
the image contents, and etc. For the further processing, it is often
necessary to perform some kinds of inverse halftoning that inverts
the effect of halftoning, that is, gets an estimate of the original
image from a given halftone. Inverse halftoning has much practi-
cal value and has attracted considerable attention of many
researchers (see, for instance, the recent papers [6,8,14–
17,30,31]). The details of methods for inverse halftoning could
be quite different from one another, depending on the various
techniques used for the halftoning. Conventionally, two main
halftoning techniques are the dithering and the error-diffusion
(ED) [20,39]. ED halftones are very common since they provide

much higher image quality than dithering halftones. This paper
focuses on the inverse of ED.

1.1. Background

To reduce the state-resolution of a continuous-tone image, the
ED involves a quantizer that assigns to its input value one of sev-
eral, say binary, halftone values. Since the quantization is a nonlin-
ear operation, the solution to the inverse ED is not unique. A
number of methods have been proposed to overcome the non-
uniqueness of inverse ED. They can be briefly classified into two
types: the approach based on the ED model (model-based inverse,
MI) and the approach not based on the ED model (non-model-
based inverse, NMI). In MI, the inverse took advantage of the infor-
mation on the ED model employed to produce the halftone. The
model parameters (i.e., the kernel of ED model) were thus used
in solving the inverse problem [14,15,18,21,31,35,40,41]. On the
other hand, the NMI regarded the inversion as some kind of deno-
ising or filtering. Simply based on the halftone image, the filter was
designed to smooth the halftone but preserve important edges as
much as possible [4–6,8,16,17,22–25,27,28,30,42]. Such denoising
ignored or was blind to the ED model. It worked without the
knowledge of the model parameters. However, to obtain the best
performance, we should use as much as possible the information
we can use, including the model information. The ignorance of
model information inevitably limits the best performance the
NMI can achieve. Often, the methods of NMI highlighted the fast
computation speed or low complexity, and sacrificed some of their
performance. In fact, some methods of NMI utilized indirectly the
model information, since they used a set of training halftones to
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design the denoising filter and the halftones were generated from a
ED process with known model parameters [4–6,16,17,22–
24,27,28]. This fact reflects exactly the importance of the model
information. This paper focuses on the MI approach.

In the spectrum of the MI, there are two main strategies for in-
verse ED. One formulated the inverse ED as the rule of projection
onto convex sets (POCS) [14,18,40]. The a priori information on the
ED model and original image were expressed in the form of several
convex sets. Then, intermediate estimates of the original image were
obtained by iteratively projecting onto these convex sets. The theory
of convex sets guarantees the final convergence of the estimate. On
the other hand, the other strategy described the inverse ED as a sto-
chastic framework [15,35,41], and took the advantage of some kinds
of statistical optimization principles. Fung and Chan [15] used a sim-
ulated annealing procedure to inverse the ED of a color image. The
procedure iteratively minimized the cost function defined as the dif-
ference between the given halftone and the halftone obtained from
error-diffusing an intermediate estimate of the color image. The ED
model parameters were required in the diffusing and a stochastic
mechanism based on the annealing temperature permitted the
estimate to escape from a local minimum of the cost function. In
the procedure, there was no exploration of the spatial properties
of the continuous-tone image. Wong [41] estimated the continu-
ous-tone image in an iterative manner and achieved very good re-
sults. In each of the iteration, the estimation performed a filtering
followed by a projection. The filtering consisted further of two steps:
a linear low-pass filtering preceding a nonlinear statistical smooth-
ing, which was designed according to the local variation of the con-
tinuous-tone image. In addition, the projection was a maximum a
posteriori (MAP) estimation that selected the most likely continuous
tone given an observed halftone pixel. The selection needs the ED
model information. We note that the statistical smoothing and the
MAP projection simply regarded the continuous-tone image as an
array of independently identically distributed (iid) random pixels.
This assumption of independence is just an ideal condition. The pix-
els in an image are generally dependent. Stevenson [35] took this
dependence into account and modeled the continuous-tone image
as a Huber–Markov random field (HMRF). Then, the inverse ED
was treated as an MAP problem that searched for the most likely
continuous-tone image given the observed halftone. The ED model
information was a necessary part of the MAP formulation. This
Bayesian modeling was indeed very interesting. Stevenson [35] re-
solved the MAP problem via iterative two phases: the descent phase
and the projection phase. The former seeks an estimate with the
minimum energy that is determined by the optimal step in the des-
cent direction. However, the estimate found is not guaranteed to fall
in the valid image space. A second phase of projection is thus neces-
sary. By applying a rule similar to the MAP projection in [41], the pro-
jection phase constrains the estimate into the valid image space. In
such descent-projection (DP) approach, the minimization in the des-
cent phase is based on a second-order Taylor series expansion,
which involves the Hessian matrix of the objective function to be
minimized. The elements of the Hessian matrix entail further the
second-order derivative of the Huber function. However, the sec-
ond-order derivative of the Huber function does not exist at the Hu-
ber threshold T (please refer to Section 3 for the definition of T).
Moreover, the results of [35] were not evaluated by some objective
indices, for example peak signal-to-noise ratio (PSNR), which could
be used for fair comparison with other approaches.

1.2. The proposed method

To deal with the inter-pixel dependence of an image, we also
adopt an MRF to model the continuous-tone image and pursue
an MAP solution. However, differently from the DP approach
[35], we suggest to calculate iterated conditional modes (ICM) for

solving the MAP problem. An abridged early-stage version of this
work was given in Ref. [19]. The method of iterated conditional
modes (ICM) was introduced by Besag [3]. It is a clever solution
to the MAP problem. It avoids the computational burden inherent
in the MAP modeling of image, and hence become popular in the
community of stochastic signal analysis, for example, see some re-
cent papers [1,7,9,12,13,26,32–34,36–38,43]. Our ICM technique
adapts to the ED model. It always searches for a better estimate
(aimed at the MAP solution) in the valid image space and hence
prevents the difficulty of going beyond the valid space, which ap-
peared in the DP approach. Experimental results show that the
ICM not only has performance comparable to the DP approach
for transient inverse, but also outperforms the DP approach when
the restored image needs to be stored (in the integer format of gen-
eral digital images) for later usage. It is thus more flexible than the
DP approach. We also compare the performance of the ICM tech-
nique, which belongs to the stochastic MI approach, and some pre-
vious methods of the POCS-based MI approach. Such comparison
between the stochastic and the POCS-based MI methods would
be valuable, but we have not ever seen such comparison in the
literature.

This paper is organized as follows: in Section 2 we introduce the
error-diffusion (ED), the halftoning operation we are going to in-
verse. Section 3 is devoted to statistical concepts on which the pro-
posed method is based. In Section 4 we explain the details of the
proposed method of iterated conditional modes (ICM). Section 5
gives some typical experimental results, which show the good per-
formance of our method. Finally, in the last section, we present our
conclusions.

2. Error-diffusion

Digital halftoning can be viewed as 1-bit quantization. Let
xs 2 ½0; G� be the gray level of the original image at a given site
s 2 L, where L is the lattice system on which the image is defined
and G is the maximum possible gray level, for example, G = 255
for 8-bit gray-scale images. Given xs, the output of the quantizer,
i.e., the corresponding halftone image at the same site, will take
a binary value bs 2 {0, G}. Since the halftone value has only two
states, it is certain for general images that the quantized level bs

is different from the input of the quantizer, yielding a quantization
error. The halftone b = {bs; s 2 L} can approximate the original im-
age x = {xs; s 2 L} when being viewed in a proper distance.

As one of the most common types of digital halftoning [39], the
error-diffusion (ED) is based on the simple principle that the quan-
tization error at each site should be diffused to its neighboring pix-
els to affect their quantization. Specifically, for a given site s 2 L,
the halftone value is the output of the quantization Q(�) defined by

bs ¼ Q x0s
� �
¼

G; if x0s P G=2
0; else

�
ð1Þ

with

x0s ¼ xs þ
X
t2Rs

atet ð2Þ

and

es ¼ x0s � bs; ð3Þ

where es is the error signal at site s, ats are the filter coefficients and
Rs is the region of support for the coefficients. Conventionally, the
region Rs is causal, that is, the error is diffused to the right and be-
low. The quantization of (1) is performed from site to site in the or-
der of raster scan. The effect of ED can be interpreted as a way of
keeping the local average intensity of the halftone image as close
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