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a b s t r a c t

A quasi-analytical model bas been developed for predicting the current–voltage characteristics of a cylin-
drical surrounding gate metal-oxide-semiconductor field-effect-transistor (MOSFET) by taking ballistic
transport and quantum confinement effects into consideration. Quantum effect was incorporated in
the Poisson’s equation in a self-consistent way together with the calculated subband energy levels.
The model was validated with numerical simulation. Better agreements were obtained as compared with
several previous models. Our results further revealed that the top of barrier (ToB) approximation is not
accurate enough at large gate and drain biases; tunneling current and better electrostatic model have to
be taken into account.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As the gate length of metal-oxide-semiconductor field-effect-
transistors (MOSFETs) has been scaled down to the decananometer
region, short-channel effects (SCEs) are severer and hinder further
device downsizing. Several new device structures have been
proposed to replace the conventional planar MOSFET structure
[1–3]. Among these structures, the surrounding gate MOSFET
(SGT) has the best SCE immunity owing to its strongest control
ability on the channel carriers with the gate electrode. Even with-
out any channel doping, this structure still shows excellent
capability in suppressing the SCEs. In addition, undoped channel
further benefits from minimum impurity scattering and has better
drive capability.

In devices with extremely small gate length with undoped
channel, ballistic transport becomes the prominent charge trans-
port mechanism [4,5]. SGTs working in ballistic regime have the
best performance and ballistic mode of operation is considered
as the theoretical limit of the SGT structure. Numerical models
such as Non-Equilibrium Green Function (NEGF) method has been
widely used in some quantum transport simulators to investigate
the performance and the underlying physics of the ballistic SGTs
[6–8]. It takes the quantum effects into account in both the con-
finement and carrier transport directions. However, it costs huge
amount of computation resource and is impractical for large scale

circuit simulations. In recent years several compact models for bal-
listic SGTs have been developed [9–12]. Among these models, most
of them relied on the numerical solutions of some equations to
obtain some intermediate parameters. The equations are that car-
rier density calculated from both electrostatics and quantum
statistics of the energy subbands are equivalent. However, when
calculating the electrostatic potential from the Poisson’s equation,
quantum effects were often neglected. In some other models, the
electric potential was assumed to be some simple functions of
some geometric parameters [11,13], it seems to be over-simplified.

In this work, we developed a quasi-analytical model for ballistic
SGTs based on Landauer’s theory [14]. The quantum effects were
incorporated in the Poisson’s equation so as to obtain the electric
potential in the thin nanowire channel. The results of the model
were compared with both numerical simulation and a previous
model [15]. As will be shown later, better agreements with sim-
ulation results were obtained for our model. However, there are
still some deviations from the simulation results when the gate
and drain biases are large. These deviations are attributed to the
source-to-drain tunneling effect as well as the inaccurate approx-
imation of the channel potential which will be dealt with in future
work.

2. Drain current model

The device structure of an n-type silicon SGT with coordinate
system used for the model formulation is shown in Fig. 1. The cylin-
drical silicon nanowire is first wrapped by an oxide layer and then
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the metal gate electrode. Source and drain regions are heavily
doped. As a result of quantum confinement, the electrons in the
nanowire are confined in discrete subbands. The subband energy
profile along channel is illustrated in Fig. 1(c). As shown in the fig-
ure, a barrier exists between the source and drain. It is assumed that
electrons can transmit through the channel if their kinetic energy is
higher than the barrier, otherwise they are reflected back. That is, at
the top of barrier (ToB), there are two electron fluxes in opposite
directions: electrons transmitting from the source towards the
drain; while the opposite electron flux is injected from drain.
These two electron fluxes are assumed to be in equilibrium with
the region from which they are injected. Current can be calculated
as the net difference of the two fluxes, i.e. [9]
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where q is the magnitude of electron charge; �h is the reduced Planck
constant; t represents the valley in which subbands reside; gt is the
degeneracy of the valley; s represents the specific subband. f E; EFð Þ
is the Fermi–Dirac distribution function with EF as the Fermi level.
EFS and EFD ¼ EFS � qVDS are the source and drain Fermi levels,
respectively. For electrons with energy larger than the subband
energy at ToB, transmission coefficient TðEÞ ¼ 1, otherwise
TðEÞ ¼ 0. Substituting these values into (1), the drain current can
be calculated as [10]:
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where the subband energy levels Et;s are the critical parameters for
calculating drain current. They are obtained by solving the two-
dimensional Schrödinger’s equation in the cross-section of the
nanowire at the ToB as follows:

�
�h2

2mt

1
r
@

@r
r
@

@r

� �
þ 1

r2

@2

@h2

" #
wðr; hÞ � q/ðr; hÞwðr; hÞ ¼ Etswðr; hÞ

ð3Þ

where /ðr; hÞ is the electric potential; wðr; hÞ is the subband wave-
function. mt is the confinement effective mass in the specific valley.
In the device illustrated in Fig. 1, channel is along the [100] direc-
tion of the crystalline silicon, the six equivalent energy valleys are
separated into two groups: primed and unprimed valleys with
degeneracy of 2 and 4, respectively. Isotropic effective masses of
mT and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mLmT
p

were used for characterizing the subband energy
levels in primed and unprimed valleys [16–19]. Here mL and mT

are, respectively, the longitudinal and the transverse effective mass
of silicon.

In flatband situation, the subband energy levels and their
corresponding wavefunctions can be solved analytically by con-
sidering a flat bottom cylindrical quantum well. The depth of quan-
tum well was often considered as infinite. However, finite well depth
still has influence on the subband energy levels [20] and was taken
into account in this model. The resulting wavefunctions and sub-
band energy levels are shown below [20]. Different wavefunctions
were used for the channel and the oxide regions because of the large
conduction band discontinuity between these two regions:

wtsðr; hÞ ¼
AtsJns
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where JnðxÞ and KnðxÞ are the n-th order first kind Bessel function
and second kind modified Bessel function, respectively. ns is the
order of Bessel function for the specific subband. mox is the electron
effective mass in the oxide and is assumed to be half of free electron
mass [21]. Eox is the affinity difference between silicon and oxide.
Subband energy is the solution of the following equation [20]:

gts Jns�1 gtsð Þ � Jnsþ1 gtsð Þ
� �

mtJns
gtsð Þ þ nts Kns�1 ntsð Þ þ Knsþ1 ntsð Þ½ �

moxKns ntsð Þ ¼ 0 ð7Þ

Fig. 1. Schematic structure of an n-type silicon SGT showing the definitions of various major device parameters: R the radius of the nanowire; tox the oxide thickness; L the
channel length. Source and drain regions are assumed to be heavily doped with a doping concentration of 1020 cm�3; the channel is undoped. X–Y plane is in the cross section
of channel (see (b)), and Z axis is along channel direction (a). Subband energy profile along channel is also shown (see (c)).
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