

Chemical Physics Letters 429 (2006) 68-76

A morphed intermolecular bending potential of OC-HCl

Luis A. Rivera-Rivera, Robert R. Lucchese, John W. Bevan *

Department of Chemistry, Texas A&M University, Building 3255, College Station, TX 77843-3255, USA

Received 13 June 2006; in final form 7 August 2006 Available online 11 August 2006

Abstract

A morphed intermolecular bending potential energy surface (PES) has been generated for the dimer OC–HCl. This morphed potential is determined from gas phase spectroscopic data and found to have a global minimum with a well depth of 694.9 cm⁻¹ and linear OC–HCl geometry having $R_{\rm CM}=4.25$ Å, $\theta_{\rm CO}=180.0^\circ$, $\theta_{\rm HCl}=180.0^\circ$, and $\phi=0.0^\circ$. The isomer CO–HCl is predicted with a well depth of 375.9 cm⁻¹ and geometry $R_{\rm CM}=4.05$ Å, $\theta_{\rm CO}=0.0^\circ$, $\theta_{\rm HCl}=180.0^\circ$, and $\phi=0.0^\circ$, which corresponds to a $\Delta E=319.0$ cm⁻¹ between these potential energy minima.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Previous ab initio calculations report that carbon monoxide can form stable isomeric complexes with hydrogen chloride [1–4]. Initial experimental work using pulse-nozzle Fourier-transform microwave spectroscopy [5,6] provided a precise ground state molecular structure for the OC-HCl isomer. A Rabi-type molecular beam electric resonance spectrometer gave additional microwave and radiofrequency data [7]. The values of the v_1 , v_2 , and v_4^1 vibrational frequencies modes were initially determined to be 2815.2(3), 2154.3(3) and 247.1(5) cm⁻¹, using infrared spectra in solid argon matrices [8]. Analysis of the intramolecular bands v_1 and v_2 located at 2851.761(2) and 2155.500(2) cm⁻¹ were reported using diode-laser [9] and Fourier transform supersonic-jet spectroscopy [10]. Subsequently, the static gas-phase FTIR spectrum was recorded [11] and used to evaluate [12] the v_5^1 bending band to be 48.9944(2) cm⁻¹. Recently, a gas phase study of the OC-HCl dimer using synchrotron radiation was reported [13]. The high-resolution gas-phase FTIR spectrum of the v_4^1 intermolecular vibrational frequencies of OC-HCl was analyzed and a Morse potential constructed for the stretching of the intermolecular distance between OC and HCl monomers.

Experiment and theory concur that the hydrogen-bonded complex OC–HCl has a linear equilibrium geometry [1–14]. *Ab initio* calculations [1–4] also suggest that the CO–HCl isomer has a linear equilibrium geometry, although experimentally it has not yet been observed. Microwave rotational studies for each of the homologous series OC–HX (X = F, Cl, Br, I) are consistent with linear equilibrium geometries [5–7,15–17]. This is in contrast to the homologous series CO_2 –HX (X = F, Cl, Br, I) where the complexes with X = F and Cl have the linear equilibrium geometry OCO–HX [18,19] but the complexes CO_2 –HBr [20] and CO_2 –HI [21] are found to be non-linear [20–22].

Morphed potential energy functions now exist for a range of Rg–HX (Rg = Ne, Ar, Kr; X = F, Br, I) complexes [23–26]. This approach has been extended to He–OCS [27] and more recently to hydrogen-bonded dimers [28]. The objective behind current studies is to calculate *ab initio* PESs for dimensionally larger systems and transform them so that a morphed potential is generated giving an optimized fit to the available experimental data. We now generate a 4D morphed intermolecular bending potential for the OC–HCl dimer for comparison with previous models of its bending potential.

^{*} Corresponding author. Fax: +1 979 8454719.

E-mail address: bevan@mail.chem.tamu.edu (J.W. Bevan).

2. Theoretical methods

2.1. Ab initio calculation of the intermolecular potential

In the two-angle embedded frame, the interaction potential of OC-HCl dimer can be expressed in terms of the Jacobi coordinates (R_{CM} , θ_{CO} , θ_{HCl} , ϕ) [29,30] (Fig. 1). $R_{\rm CM}$ is the distance between the centers of mass of the two monomers, the angles θ_{CO} and θ_{HCl} describe the orientation of the monomers CO and HCl respectively, and the dihedral angle ϕ describes the relative internal orientation of both monomers. In all calculations, the bond lengths of both monomer components were fixed at experimental $r_{\rm e}$ 1.128323 Å for CO and 1.27455 Å for HCl [31]. The interaction energy of the OC-HCl dimer was calculated using the Molpro 2002 electronic structure package [32] at CCSD(T)/aug-cc-pVTZ level of theory. Every calculated point was corrected for the basis set superposition error (BSSE) using the counterpoise correction of Boys and Bernardi [33], and the PES was calculated on a grid of 2298 points. This potential has a global minimum with well

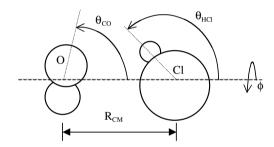


Fig. 1. Geometry of OC-HCl dimer in Jacobi coordinates.

depth determined to be 653.11 cm⁻¹ at the geometry $R_{\rm CM} = 4.25 \, \text{Å}$, $\theta_{\rm CO} = 180.0^{\circ}$, $\theta_{\rm HCl} = 180.0^{\circ}$, and $\phi = 0.0^{\circ}$.

2.2. Fitting of the ab initio potential

In order to have a global representation of the PES, the calculated 2298 *ab initio* points at each value of R_j were fitted to the spherical expansion [29,30]

$$V(R_j, \theta_{\rm CO}, \theta_{\rm HCl}, \phi) = \sum_{\Lambda} v_{\Lambda j} A_{\Lambda}(\theta_{\rm CO}, \theta_{\rm HCl}, \phi), \tag{1}$$

where Λ is a collective symbol for the quantum numbers $\{L_{\rm CO}, L_{\rm HCI}, L\}$, v_{Aj} are the expansion coefficients [29] and $A_A(\theta_{\rm CO}, \theta_{\rm HCI}, \phi)$ is given by Eq. (2):

$$\begin{split} A_{A}(\theta_{\text{CO}}, \theta_{\text{HCI}}, \phi) &= \sum_{M=0}^{\min(L_{\text{CO}}, L_{\text{HCI}})} (-1)^{M} (2 - \delta_{M,0}) \\ &\times \langle L_{\text{CO}}, M; L_{\text{HCI}}, -M | L, 0 \rangle \\ &\times \left[\frac{(L_{\text{CO}} - M)! (L_{\text{HCI}} - M)!}{(L_{\text{CO}} + M)! (L_{\text{HCI}} + M)!} \right]^{1/2} \\ &\times P_{L_{\text{CO}}}^{|M|} (\cos \theta_{\text{CO}}) P_{L_{\text{HCI}}}^{|M|} (\cos \theta_{\text{HCI}}) \cos(M\phi) \end{split}$$

In Eq. (2) $P_L^{|M|}(\cos\theta)$ stands for the associated Legendre polynomials, and the symbol $\langle L_{\rm CO}, M; L_{\rm HCI}, -M|L, 0\rangle$ is the Clebsch–Gordan coefficient. The expansion coefficients v_{Aj} were evaluated using a linear least-squares procedure [29]. A weighting factor $F_{\rm w}=25~{\rm cm}^{-1}$ is used in order to have an absolute average difference less than 6 cm⁻¹ between the values of the points in the *ab initio* and fitted potentials, for the points within 250 cm⁻¹ of the minimum of the potential [29,30]. The four-dimensional potential was

Table 1								
Experimental data	used in th	e fits and	l fitted	values	with	the	uncertainties 1	used

Observable	Units	Isotopomer	$V_{ab\ initio}$	$V_{ m morphed}$	Exp.	σ_k
B (ground state)	$10^{-2}\mathrm{cm}^{-1}$	¹⁶ O ¹² C-H ³⁵ Cl	5.50	5.60	5.58 ^a	0.01
D (ground state)	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{35}Cl$	17.2	15.8	16.0^{a}	0.5
B (ground state)	$10^{-2}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{37}Cl$	5.37	5.47	5.58 ^a	0.01
D (ground state)	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{37}Cl$	16.4	15.1	15.3 ^a	0.5
B (ground state)	$10^{-2}\mathrm{cm}^{-1}$	$^{16}O^{13}C-H^{35}Cl$	5.44	5.54	5.52 ^a	0.01
D (ground state)	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{13}C-H^{35}Cl$	16.9	15.5	15.6 ^a	0.5
B (ground state)	$10^{-2}\mathrm{cm}^{-1}$	$^{16}O^{12}C-D^{35}Cl$	5.51	5.61	5.59 ^a	0.01
D (ground state)	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{12}C-D^{35}Cl$	15.9	14.7	15.0 ^a	0.5
$B(v_5^1)$	$10^{-2}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{35}Cl$	5.57	5.67	5.66 ^b	0.01
$D(v_5^1)$	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{35}Cl$	20.5	18.6	19.1 ^b	0.5
$B(v_4^1)$	$10^{-2}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{35}Cl$	5.36	5.47	5.43°	0.01
$D(v_4^1)$	$10^{-8}\mathrm{cm}^{-1}$	$^{16}O^{12}C-H^{35}Cl$	25.5	21.5	21.4°	0.5
$\langle P_2(\cos\theta)\rangle$ (H ³⁵ Cl) (0,0,0)		$^{16}O^{12}C-H^{35}Cl$	0.81	0.81	0.77^{a}	0.05
$\langle P_2(\cos\theta)\rangle(H^{37}Cl) (0,0,0)$		$^{16}O^{12}C-H^{37}Cl$	0.81	0.81	0.77^{a}	0.05
$\langle P_2(\cos\theta)\rangle$ (H ³⁵ Cl) (0,0,0)		$^{16}O^{13}C-H^{35}Cl$	0.81	0.81	0.77^{a}	0.05
$\langle P_2(\cos\theta)\rangle$ (D ³⁵ Cl) (0,0,0)		$^{16}O^{12}C-D^{35}Cl$	0.86	0.86	0.82^{a}	0.05
v_5^1	cm^{-1}	$^{16}O^{12}C-H^{35}Cl$	48.59	48.99	48.99 ^b	0.01
$v_4^{\tilde{1}}$	cm^{-1}	$^{16}O^{12}C-H^{35}Cl$	191.80	201.20	201.20°	0.01
\vec{G}			222.04	2.86		

a From Ref. [6].

^b From Ref. [12].

^c From Ref. [13].

Download English Version:

https://daneshyari.com/en/article/5389905

Download Persian Version:

https://daneshyari.com/article/5389905

Daneshyari.com