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Abstract

We propose a numerical scheme for the integration of the Langevin equation which is second-order accurate. More importantly, we
indicate how to generalize this scheme to situations where holonomic constraints are added and show that the resulting scheme remains
second-order accurate.
� 2006 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of a system of interacting particles in the
presence of a thermal bath at temperature T can be
described by the Langevin equation

M€xðtÞ ¼ F ðxðtÞÞ � cM _xðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT c

p
M1=2gðtÞ ð1Þ

where xðtÞ 2 R3N denotes the position of the N particles, M

the diagonal mass tensor, F(x) the force, c > 0 the friction
coefficient and gðtÞ ¼ _W ðtÞ is a white-noise (W(t) being a
Wiener process). As a result, the Langevin Eq. (1) is an use-
ful tool to sample the Boltzmann–Gibbs distribution
q(x,v) = Z�1e�bH(x,v) where Z ¼

R
R3N�R3N e�bHðx;vÞdxdv is

the partition function and Hðx; vÞ ¼ 1
2
hv;Mvi þ V ðxÞ is the

Hamiltonian (here we assumed that F = �$V).
The question that we investigate here is how to generate

an accurate approximation of a trajectory (x(t), v(t)) via
time-discretization of (2). This question has been addressed
by many authors. Among the most popular integrators are
the one of van Gunsteren and Berendsen (vGB) proposed
in [1], the one of Brooks–Brünger–Karplus (BBK) pro-

posed in [2] and the Langevin impulse ðLbIÞ integrator pro-
posed in [3]. These various integrators have been recently
reviewed and compared in [4], and it has been shown that
BBK is first-order accurate, whereas both vGB and LbI
are second-order accurate. More recently, a class of inte-
grators which are up to third-order accurate and also have
some additional nice properties have been proposed in [5].
While all of these integrators have been derived for Lange-
vin equations subject to no constraints, they have been
often used to integrate systems in which holonomic con-
straints are present: this is usually done by simply applying
an extra step of SHAKE [6] at every time-step. To the best
of our knowledge, however, nobody has ever addressed the
question of whether such a generalization of these integra-
tors to simulate systems with constraints affect their numer-
ical accuracy. This question is pertinent since higher-order
accurate integrators allow for bigger time-steps and
thereby permit to simulate the systems over longer time-
intervals. In the deterministic context, because SHAKE
does not affect the general structure of second-order inte-
grators such as Verlet, one can easily show that it must pre-
serve the order of accuracy of the integrator. The situation
is more complex for Langevin integrators, however,
because the structure of these integrators is more compli-
cated and there is a nontrivial interplay between the force
and the random noise at every time-step.
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In this Letter, we investigate the issue of the accuracy of
a Langevin integrator used with SHAKE. Our main results
are: (i) the integrator (21) and its quasi-symplectic version
(23) in Section 2, which give simple and, to the best of
our knowledge, new second-order accurate integrators for
Langevin equations without constraints and (ii) the inte-
grators (34) and (39) in Section 3, which show that SHAKE
can be applied to (21) and (23) to impose holonomic con-
straints without loosing the second-order accuracy of the
integrator. While we do not do so here, the method used
in Section 3 can in principle be applied to prove (or dis-
prove) that the popular integrators such as vGB, BBK or
LbI keep their order of accuracy when applied in conjunc-
tion with SHAKE.

2. Basic algorithms

Written componentwise as a stochastic differential equa-
tion, (1) becomes

dxiðtÞ ¼ viðtÞdt

dviðtÞ ¼ ðm�1
i F iðxðtÞÞ � civiðtÞÞdt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT cim

�1
i

p
dW iðtÞ

(
ð2Þ

where (x1,x2,x3) are the x, y and z components of particle 1
(v1,v2,v3) are the components of its velocity, m1 = m2 =
m3 > 0 is its mass and c1 = c2 = c3 > 0 is the friction coeffi-
cient it is subject to, and similarly for (x4,x5,x6), etc. To
simplify the formula, it will be convenient to write (2) as

dxiðtÞ ¼ viðtÞdt

dviðtÞ ¼ ðfiðxðtÞÞ � civiðtÞÞdt þ ridW iðtÞ;

�
ð3Þ

where we defined fiðxÞ ¼ m�1
i F iðxÞ and ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT cim

�1
i

p
.

Going back to vectorial notations, this equation can be
written as the system of integral equations

xðt þ hÞ ¼ xðtÞ þ
R tþh

t vðsÞds

vðt þ hÞ ¼ vðtÞ þ
R tþh

t f ðxðsÞÞds� c
R tþh

t vðsÞds

þrðW ðt þ hÞ � W ðhÞÞ

8><>: ð4Þ

Using x(s) = x(t) + O(h) and vðsÞ ¼ vðtÞ þ Oð
ffiffiffi
h
p
Þ (recall

that W ðt þ hÞ � W ðhÞ ¼ Oð
ffiffiffi
h
p
Þ) under the integrals and

neglecting the corrections of order h3/2 and higher, we
arrive at the Euler–Maruyama scheme [7,8]:

xnþ1 ¼ xn þ hvn

vnþ1 ¼ vn þ hf ðxnÞ � hcvn þ
ffiffiffi
h
p

rnn:

�
ð5Þ

where xn is the numerical approximation of x(nh), vn that of
v(nh) and nn are independent (for different n) Gaussian vari-
ables with mean zero and covariance Eðnn

i n
n
j Þ ¼ dij (here we

used W ðt þ hÞ � W ðtÞ¼d
ffiffiffi
h
p

nn, where ¼d denotes equality in
law or distribution). It can be shown [7,8] that the scheme
(5) is first-order accurate, meaning that, given any suitable
observable /,

sup
06n6T=h

jE/ðxðnhÞ; vðnhÞÞ � E/ðxn; vnÞj 6 Ch ð6Þ

where (x(nh), v(nh)) is the (exact) solution of (2) evaluated
at t = nh, (xn,vn) is its numerical approximation by (5)
and it is assumed that (x(0),v(0)) = (x0,v0); E denotes
expectation with respect to the noises in (2) and (5), and
the constant C depends on T <1 and the observable
/(x,v) but not on h. Note that (6) is a finite-time error esti-
mate, hence it says little about the error in computing equi-
librium averages, but it indicates that it may be necessary
to use (5) with a very small time-step h when the force field
is stiff. Hence (5) may be insufficient in applications (Fig. 1).

To do better than (5), go back to (4), and for v(s) in the
integral

R tþh
t vðsÞds use

vðsÞ ¼ vðtÞ þ
R s

t f ðxðuÞÞdu� c
R s

t vðuÞduþ rðW ðsÞ � W ðtÞÞ
ð7Þ

Using x(u) = x(t) + O(h) and vðuÞ ¼ vðtÞ þ Oð
ffiffiffi
h
p
Þ at this

level we deduce that (recall that s 2 [t, t + h] and hence
s � t = O(h))

vðsÞ ¼ vðtÞ þ ðs� tÞðf ðxðtÞÞ � cvðtÞÞ
þ rðW ðsÞ � W ðtÞÞ þ Oðh3=2Þ ð8Þ

and henceR tþh
t vðsÞds ¼ hvðtÞ þ 1

2
h2ðf ðxðtÞÞ � cvðtÞÞ

þ r
R tþh

t ðW ðsÞ � W ðtÞÞdsþ Oðh5=2Þ ð9Þ

Similarly, for f(x(s)) in the integral
R tþh

t f ðxðsÞÞds, use

f ðxðsÞÞ ¼ f ðxðtÞÞ þ
R s

t vðuÞ � rf ðxðuÞÞdu ð10Þ

then x(u) = x(t) + O(h) and vðuÞ ¼ vðtÞ þ Oð
ffiffiffi
h
p
Þ to arrive

at
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Fig. 1. Numerical errors of the integrators (5), (21) and (23) on the
example of _xðtÞ ¼ vðtÞ; _vðtÞ ¼ �xðtÞ � vðtÞ þ

ffiffiffi
2
p

gðtÞ, x(0) = v(0) = 0. The
times steps are h = 2�n for n = 2,3,4,5,6. The quantity monitored for
the error is the estimate of Eðx2ð1Þ þ v2ð1ÞÞ ¼ 0:9796111900 . . . computed
by ensemble averaging over 108 independent realizations. The dashed
curves are the graphs of the functions 2�n(=h) and 2�2n(=h2) versus n. The
circles are the errors obtained using the first-order integrator (5) and they
are consistent with the error estimate (6); the diamonds are the errors
obtained using the second-order integrator (21) and they are consistent
with the error estimate (18); the squares are the errors obtained using the
quasi-symplectic second-order integrator (23).
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