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Abstract

The origin of an artifact known as the appearance of ghost states in mapped Fourier grid methods is investigated. It was found that
the ghost states can be attributed to under sampling of the high momentum components which are folded from the inner to the outer
region of the potential to create the ghosts. The effect was corrected by addition of a complex potential at the outer region. The exterior
complex potential was shown to shift the ghost states to the continuum part of the spectrum in a controllable way. The various methods
to improve the mapped grid method are discussed in this context, and the use of zero boundary conditions is shown to be not essential.
� 2006 Elsevier B.V. All rights reserved.

1. Introduction

The computational cost of a quantum calculation cru-
cially depends on the size of the Hilbert space N used for
the simulation. Dynamical calculations can be made to
scale semi linearly with the number N (O(N logN)) directly
for propagation methods, or as O(N3) for methods based
on diagonalization [1]. Practically, N becomes the number
of grid points required to converge the calculation. Effi-
cient computational methods tend to minimize the number
N as much as possible. The idea is to limit the representa-
tion to points where the probability amplitude of the wave-
function is above a certain threshold value. A pre-
estimation of the number of grid points can be obtained
by examining the representation boundaries in phase space.
Once an upper limit for the energy in the calculation is
established, the phase space volume contained in this
energy shell can be calculated from the Hamiltonian. In
one dimension the minimum number of points N is the
phase pace volume V divided by �h, N min ¼ V

�h [2]. Outside
the energy shell the wavefunction will decay exponentially

fast and some sampling points are required to represent
the evanescent part of the wavefunction. As a result the
actual number of points required to achieve exponential
convergence is larger than Nmin ¼ V

h [2,3]. In addition, sam-
pling considerations increase further the number of grid
points. For example, a uniform grid has a rectangular
shape in phase space. The boundaries of such a grid have
to be set to contain the extreme points of the energy shell.
If the shape of the energy shell is convoluted most of the
phase space area of the rectangular representation is
waisted. This leads to a lower sampling efficiency
g ¼ NMin

N � 1. The problem is particularly acute in the field
of ultracold scattering and photoassociation. A very small
grid spacing is required to represent the maximum momen-
tum the colliding atoms acquire when they approach each
other. On the other hand, the grid has to be extended to
extremely large distances in order to describe the very long
De-Broglie wavelength of the cold atoms in free space. The
sampling efficiency can be as low as g � 10�4.

A solution to the grid optimization problem was sug-
gested by Fatal et al. [4] which introduced a mapping func-
tion from a uniform to a non-uniform grid. Such a grid has
a denser sampling at points with higher momentum values.
As a result, the sampling correlates position with momen-
tum. An important addition to the mapping procedure
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was developed by Kokoouline et al. [5] suggesting the use
of a semiclassical mapping function. The idea is to relate
the local grid spacing to the inverse of the classical momen-
tum corresponding to the value of the energy shell at that
point. An improvement of the sampling to account for
regions where the semi-classical approximation is not valid
was suggested by Nest and Meyer [6]. Since its introduction
the semiclassical procedure has been extensively used in the
field of ultracold molecules [7]. For example calculating the
last bound levels of alkali diatomic molecules as well as in
simulating photoassociation of ultracold atom pairs [8,9].
The mapping procedure enabled accurate calculation of
these processes which was not possible before.

Despite this success, a troubling artifact appeared and
was termed ghost states [10]. The signature of these states
showed unphysical energy states embedded in the physical
spectrum of bound states. Most of the amplitude of the
ghost was at large interatomic distances. The exact origin
of the ghost states has never been fully understood. It
was found that the use of fixed boundary conditions that
vanish at the end of the grid eliminate some of the ghost
states. This enforcement of zero boundary conditions is
restrictive. Moreover, it sets constraints on the number of
grid points to contain exact integer number of periods, a
limitation which does not necessarily relate directly to the
system under consideration.

In this Letter we characterize in more details the ghost
states and suggest an explanation of their origin. We show
also that a complex scaling of the potential, namely, the
addition of imaginary boundary conditions to the potential
can be used as a simple and natural solution to the removal
of ghost states.

The outline of this Letter is as follows: in Section 2 we
will describe shortly the mapped Fourier grid method, fol-
lowing Refs. [5,10]. Section 3 will investigate the features of
the ghost states and will try to deduce explanation of their
origin. In Section 4 we will show the usefulness of an addi-
tion of an exterior complex potential in removing these
states from the spectrum. Section 5 will conclude and sum-
marize the discussion.

2. The mapped fourier grid method

The purpose of the mapping procedure is to find the
most efficient grid representation for the Hamiltonian of
the form:bH ¼ bT þ bV ð1Þ
where bH; bT and bV are the Hermitian Hamiltonian, kinetic
and potential energy operators. A uniform Fourier grid will
be built according to the following steps:

1. The energy space of the problem Emax and Emin is esti-
mated. Typically Emin is the bottom of the attractive
potential and Emax is the maximum kinetic energy of
the colliding pair to be represented on the grid.

2. Using Emax and a semiclassical estimation of tunneling
Rmin is determined. Rmax is determined to include all
the interval needed to represent the last bound state.
The grid interval becomes LR = Rmax � Rmin.

3. By estimating the maximal kinetic energy Tmax = E

max � Vmin, the maximal possible semiclassical momen-
tum is calculated pmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mT max

p
, where m is the

reduced mass of the pair. The corresponding grid in
momentum space has to comply with jpj 6 pmax, so that
Lp = 2pmax.

4. Each volume in phase space at the size of �h should hold
at least one grid point. The number of grid points to
support the system will be than given by: N�h = LRLp.

5. Distribute the N grid points equally on the grid (each
grid point at the middle of a segment).

The operator bV in this coordinate representation is diag-
onal. The kinetic energy operator bT can be evaluated either
numerically by bidirectional FFT, or analytically as :

bT i;i ¼
p2

mL2
R

N 2 þ 2

6
ð2Þ

bT i6¼j ¼
p2

mL2
R

ð�1Þi�j

sin2½ði� jÞp=N �
ð3Þ

assuming an even number of grid points. For the case of
odd number of points see [11]. For large grids the numeri-
cal application of bT is more efficient since it scales as
O(N logN) compared with O(N3) for applying Eq. (3) while
the accuracy of the two is comparable.

An important feature of the uniform Fourier grid
method is that the considerations for choosing the grid
are global. Each of the grid points can support the largest
possible momentum required. This over-estimation is
reduced significantly by using a Mapped Fourier Grid.
The algorithm for building a mapped Fourier grid is the
following:

1. Use the same grid length in coordinates LR as was deter-
mined in the uniform Fourier grid method.

2. Beginning from the inner grid point Rmin, integrate the
local classical action up to b to get R1:

b ¼ 2m
p2

� �1
2
Z R1

Rmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eadd � V ðrÞ

p
dr: ð4Þ

Eadd is given by the maximal asymptotic kinetic energy to
be represented on the grid, usually with small additional
energy to allow the extension of the grid to classically
forbidden zones. The parameter b 6 1 serves as an esti-
mation for the local volume coverage in phase space.
Smaller values of b will distribute more points on the
grid, while for b = 1 the minimal classical estimation
for the needed phase space density of the points is taken.

3. Continue to integrate the action from R1 to get R2, R3

etc. to the end of the physical grid, with RN = Rmax.
4. The length of the mapped grid Lx is given by b(N � 1).
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