Microelectronic Engineering 148 (2015) 122-128

journal homepage: www.elsevier.com/locate/mee

Contents lists available at ScienceDirect

Microelectronic Engineering

MICROELECTRONIC
ENGINEERING

Physical design automation of transistor networks

Adriel Mota Ziesemer Jr *°, Ricardo Reis *

¢ Universidade Federal do Rio Grande do Sul, PPGC/PGMicro, Porto Alegre, Brazil
b Instituto Federal do Rio Grande do Sul (IFRS), Canoas, Brazil

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 16 July 2015

Received in revised form 28 October 2015
Accepted 28 October 2015

Available online 31 October 2015

Integrated circuits implemented with traditional standard cell approaches use a limited set of cells available in a
library, created in advance, to generate its layout. It breaks complexity but frequently generates circuits with
more transistors (due to the reduced numbers of functions and sizes available), more area, higher delays and
more power consumption (mainly due to static power consumption, which is proportional to the number of

transistors) than its potential. Many approaches have been attempted to improve this scenario at layout level:

Keywords:

Physical design
Transistor network
EDA

Cell synthesis
Layout
Nanoelectronics

cell synthesis tools (to speed up the turnaround time of new cells), library-free layout synthesis and full custom
layouts. We present in this paper a review of the methodologies and algorithms used in prior works for
transistor-level layout synthesis, and especially recent ones targeting technologies beyond 65 nm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Standard cell based automatic synthesis flows have been used in the
industry and academia for decades. This technique is known to be very
reliable and predictable since the same library of standard cells can be
used in several different designs. However, the number and type of
cells available in the library can limit the quality of the designed circuits.
A solution is the use of a transistor network design automation tool
[58,1] that can allow the automatic layout generation of any transistor
network with any transistor sizing. This allows the reduction of the
needed number of transistors to realize a logic function. And the reduc-
tion on the number of transistors also reduces leakage power, wire
length and area [58]. A large and diverse cell set can be determinant
to efficient designs. There are many studies on special purpose cells
for specific problems like: asynchronous circuits [6,30,55], aging [31],
NBTI [32], leakage [33,53], gate sizing [34], and SET [53]. These cell lay-
outs are generally not available in cell libraries and are usually designed
by hand, which increases the design time and limits the adoption and
development of promising technologies. Moreover, the adoption of a
new fabrication process may require each of the cells to be redesigned
almost from scratch. It can take an experienced leaf cell designer several
days to craft a large cell, and this amount of time is increasing as design
rules become more complex. In this scenario, synthesis tools can in-
crease cell layout design productivity by one order of magnitude [31].
It is also useful to generate initial layouts (to be further optimized
by hand), cell size estimations, and to evaluate key aspects of the

* Corresponding author.
E-mail address: reis@inf.ufrgs.br (R. Reis).

http://dx.doi.org/10.1016/j.mee.2015.10.018
0167-9317/© 2015 Elsevier B.V. All rights reserved.

technology (like the height of the cells) in an early stage of develop-
ment. In comparison to quality manual designs, cell synthesis tools
present between — 6% [45] and 3.6% [1] of area overhead, on average.
But the main issue is that using an automatic layout generation tool
we can generate the layout of any transistor network. This means that
we can do a deep logical minimization allowing a significant reduction
in the amount of transistors needed to realize an integrated circuit [58].

Because implementing every possible logic function for each cell size
is intractable, and the inefficiency of the mapping can negate the advan-
tages of having customized logic cells [52], some works focus on a
library-free approach. CellTK [6] (45 nm) creates custom cells on de-
mand, while Punch [41,53] employs an automatic full-custom layout
generation strategy. Both methods result in a one-to-one mapping be-
tween circuit description and physical design, eliminating the disadvan-
tages of being tied to a fixed library. However, circuit characterization is
only performed in late design stages (which can be hard computation-
ally and unreliable) and DRC errors are significantly more critical.
These characteristics resemble those of full custom layouts, but with
orders of magnitude time savings over expert human effort. Despite
this fact, actual implementations have shown an area overhead of as
much as 50% higher [6], probably due to conservative layout strategies
for producing legal designs.

This article presents a review of the transistor-level layout synthesis
problem. Prior works related to this subject are presented and discussed.

2. Layout synthesis

Lefebvre [2] classified the layout generation methods in three cate-
gories: procedural generators, re-compaction of existing libraries and


http://crossmark.crossref.org/dialog/?doi=10.1016/j.mee.2015.10.018&domain=pdf
http://dx.doi.org/10.1016/j.mee.2015.10.018
mailto:reis@inf.ufrgs.br
Journal logo
http://dx.doi.org/10.1016/j.mee.2015.10.018
http://www.sciencedirect.com/science/journal/

A.M. Ziesemer Jr, R. Reis / Microelectronic Engineering 148 (2015) 122-128 123

automatic cell synthesis. Procedural generators can be based on a
language or symbolic, and each cell has its own description. Re-
compaction, as used in [11,13,16,17], makes use of a generic tool to
migrate existing cell layouts to a new fabrication technology or to
improve its characteristics (as for yield optimization, OPC and
DFM). Cell synthesis tools [1,4,6,11,14,28,42,45,53] generate layouts
from a transistor-level netlist description (as SPICE). It is considered
the most flexible method regarding the cell architecture, and is the
only one to require no previous layout information. It is also better
suited to deal with non-linear technology scaling and new design
rules.

Cell synthesis usually consists of mapping a cell netlist with individ-
ually sized transistors into a circuit layout, considering the design rules
of a target fabrication technology. The circuit layout is typically defined
by a template that provides a general strategy to design libraries with
compatible cells, to embed expert's knowledge into the synthesis pro-
cess and to reduce its complexity. The main aspects of a template are de-
fined by a layout style. Some of its parameters can be changed in order
to increase flexibility and cover characteristics that differ between cell
libraries (as cell height, routing pitch, well height, supply width, TAPs,
etc). The result of the synthesis process is usually produced after the so-
lution of these two major subproblems: transistor placement and intra-
cell routing. Other common subproblems are transistor folding, layout
compaction, ports and TAPs placement.

Following we present a compilation of the main aspects and methods
used for layout synthesis.

3. Layout styles

Defines assumptions regarding how the layout should be produced.
It is the most important aspect of the synthesis process because all the
following algorithms are defined regarding this. Layout styles can be
classified according to the position and orientation of the transistors
inside the cell area (Fig. 1):

= 1-D — The most common in standard cell libraries, it was proposed
first by Uehara and van Cleemput [3] and used in many other
works including [1,4,5,6,21,28,45]. In this style, the transistors are
drawn vertically in two horizontal diffusion rows: one for the P
type and the other one for the N type transistors. It is better suited
for complementary logic CMOS circuits since each P transistor can
be paired to an N transistor, reducing the unused space inside the
cell, but can support other logic families as well. A 1 1/2-D variation
was proposed in [7] (and supported in [45]) which is flexible in the
restriction of the transistor type in each row. This arrangement is
better suited for non-dual circuits but has gotten little adoption
until now.

= 2-D — Are better suited for analog cells, leaf cells in datapaths, large
cells (with more than 30 transistors) and logic cells with non-dual
transistor netlist. It usually allows transistors in different orienta-
tions (free-form layouts), as in [8], or to be placed in multiple
rows (as an 1-D extension to support multiple height cells), as in
[9,10,42,45].

Other things to be considered are: power structure, number and
direction of the metal layers available for intracell routing, gridded de-
sign rules (GDRs), abutment scheme, position of the routing tracks, iso-
lation transistors, multigate transistors, standard cell compatibility,
regular layout fabric (prefabricated), TAPs, etc.

4. Transistor folding

Consists of breaking larger transistors into smaller parallel ones
(called legs or fingers) in order to make it fit in the cell height, or in its
respective P or N diffusion row. This arrangement allows diffusion shar-
ing between its transistors, reducing its impact in area, but can also be
optimized to maximize diffusion sharing with adjacent transistors. It
can be done by choosing between breaking into an even or odd number
of legs, as shown in Fig. 2. An exact method was proposed for the first
time in [10] to treat this problem, using ILP (Integer Linear Program-
ming). However, its applicability is restricted to static dual CMOS
circuits and the legs are placed contiguously, without guarantee of a
minimum-area layout. In [5], an area-optimal method without these re-
strictions was developed to cover new technologies with 1-D GDRs,
where differently sized transistors cannot share diffusions. This design
style is gaining ground for addressing the printability issues in sub-
wavelength photolithography. While in most works the transistor-
folding algorithm creates equal sized legs, as in [10,21], it is crucial to
explore different sizes with GDRs [5].

Another option is to not address the folding problem directly, but in-
stead, let the designer to define it manually before the cell synthesis pro-
cess as in [4,6,45]. However, doing this step during the synthesis can
increase convenience and achieve better optimization, especially when
executed before (dynamic placement with static folding) [5,10,21,42] or
along (dynamic placement and folding) the placement step [25]. When
executed after, it usually achieve a lower quality result, as in the “2
legs” case of Fig. 2, where a diffusion break was inserted.

Transistors in series (called and-stacks) can be clustered to apply
this method to the whole group simultaneously. It eliminates interme-
diate connections that are in the same electrical potential, reducing
the total wire length, and also the number of diffusion-to-metal contacts
(called straps). It allows the transistors to be placed closer together, as in
[10], resulting in potentially smaller cell layouts with improved electri-
cal properties. One side effect of this method is that the additional

2-D (free-form) 2-D (multi-height)

Fig. 1. Different types of layout styles.



Download English Version:

https://daneshyari.com/en/article/539082

Download Persian Version:

https://daneshyari.com/article/539082

Daneshyari.com


https://daneshyari.com/en/article/539082
https://daneshyari.com/article/539082
https://daneshyari.com

