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a b s t r a c t

The orbital communication theory (OCT) by Nalewajski is derived step by step from first principles of
quantum mechanics. It is shown that the entropy representation within the molecular orbital theory
arises as a natural consequence of the probabilistic interpretation of quantum superposition. The algebra
of selected types of molecular information channels is reinvestigated within the framework of the theory
of Markov chains and several representative models of molecular communication systems in atomic-
orbital resolution are discussed. The presented results show that the Shannon entropy alone, i.e. with
no insight into its components - mutual information and conditional entropy, does not allow one to cor-
rectly identify the source of uncertainty connected with the electron probability distribution, which in
some cases leads to wrong conclusions about the electron delocalization effects in a molecule.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The probability is one of the most important concepts that we
unwittingly and almost involuntarily use in everyday life when
making decisions and assessing risk. The theory of probability
underlies statistical modeling methods that are widely applied in
business, insurance industry, marketing, gambling, environmental
and financial regulations, entitlement analyses, and many others
[1–3]. In science, it provides the conceptual and mathematical
basis for statistical mechanics and quantum theory, although the
roles that it plays in both are known to be fundamentally different
[4,5]. In the field of chemistry, there actually would not be the
entire analytical chemistry without the analysis of measurement
errors [6]. The probability theory also enables one to elucidate a
more precise meaning of several important but semantically not
sharply defined terms like molecular similarity, open subsystem,
molecular fragment and the chemical bonding concept itself [7].
It were Giambiagi and Mayer who first found that the effect of elec-
tron delocalization between two chemically bonded atoms can be
evaluated using statistical tools that measure linear dependence of
the electron probability distributions on each bonded atom [8,9]. A
couple of years later Yamasaki and Goddard generalized this con-
cept to a hierarchy of quantities, i.e. partial atomic charges, bond
covalencies, bond-bond correlation coefficients, where each quan-
tity is the expectation value of an operator related to the statistical

covariance of the previous quantity [10,11]. In turn, Mohajeri and
Dasmeh introduced and examined several different probabilistic,
information-theoretic and fuzzy models to quantify covalency
and electrovalency of the chemical bond [12]. But probably the
most comprehensive description of the chemical bonding
grounded on purely probabilistic approach is the orbital communi-
cation theory (OCT) by Nalewajski [13–22]. The theory has been
developed over the last decade within the framework of studies
on the application of information-theoretic tools in the molecular
electronic structure theory, and so far has been largely outlined
in four monographs and more than one hundred papers by its
author. In OCT the standard tools used in analyzing and comparing
the probability distributions and their dependencies within the
statistical theory of communication are utilized in probing the
chemical bonding. As demonstrated in numerous studies, descrip-
tion of the electronic structure of chemical bonds within the OCT
framework enables one to precisely define such concepts as chem-
ical valence, bond multiplicity, covalency and ionicity and many
other general laws of chemistry [23–26]. Furthermore, adopting
the representation of entropy in the description of molecular elec-
tronic structure opens up new possibilities to practical studies of
dynamical electron correlation [27–29], through-space and
through-bridge chemical interactions [30], many-orbitals
conjugation effects [31,32], the extent of electron delocalization
in aromatic and heteroaromatic species [33–36], etc.

In this paper we investigate step by step how the entropy
representation in the formalism of orbital communications
emerges from first principles of quantum mechanics (the 2nd
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and 3rd Section) and provide a brief review of the original OCT for-
mulation by Nalewajski (a part of the 3rd and 4th Section). Also, we
examine some properties of the algebra of molecular information
channels within the framework of the theory of Markov chains
and discuss several representative probabilistic models of molecu-
lar communication systems in atomic-orbital resolution (the 5th
Section).

2. Conditional probabilities of quantum states

Quantum superposition is probably one of the most fundamen-
tal postulates of quantum theory [37]. It states that for a given set
of allowed quantum state vectors, jvii

� �
, any linear combination

jwki ¼
Xn
i¼1

P̂ijwki ¼
Xn
i¼1

jviihvijwki ¼
Xn
i¼1

jviiCi;k; ð1Þ

also represents a possible quantum state; here P̂i stands for the
operator projecting onto state jvii, while Ci;k denotes the corre-
sponding linear expansion coefficient. Within the basis of orthonor-
mal state vectors, hvijvji ¼ di;j, normalization of the superposed
jwkivector requires that

hwkjwki ¼
Xn
i¼1

hwkjviihvijwki ¼
Xn
i¼1

jCi;kj2 ¼ 1: ð2Þ

This normalization condition provides the interpretation of Ci;k as

an amplitude (aðkÞ
i ) of the probability (pðkÞ

i ) of finding quantum sys-
tem in state jviiprovided that a full state of the system is described
by the superposed vector jwki,

pðkÞ
i ¼ jaðkÞi j2 ¼ hwkjP̂ijwki ¼ jCi;kj2;

Xn
i¼1

pðkÞ
i ¼ 1: ð3Þ

In other words, pðkÞ
i can be interpreted as an expectation value of the

projection operator P̂i taken in the quantum state jwki. In turn, the

D̂k ¼ jwkihwkj projector is called the density operator and gives rise
to the density matrix Dk in the basis of jvi:
Dk ¼ hvjD̂kjvi ¼ hvjwkihwkjvi ¼ CkC

y
k; ð4Þ

where Ck denotes the column vector of the corresponding linear
combination coefficients; normalization condition (2) immediately
implies that Dk is an idempotent matrix,

D2
k ¼ CkC

y
kCkC

y
k ¼ Ck

Xn
i¼1

jCi;kj2
" #

Cy
k ¼ Cy

kCk ¼ Dk: ð5Þ

Diagonal elements of Dk have the same probabilistic interpretation
as the elements of the p-vector from (3), while the off-diagonal ele-
ments can be interpreted as amplitudes of the probabilities of find-
ing (due to measurement) the quantum system given by jwki to be
described simultaneously (in a statistical sense) by a pair of differ-
ent vector states, jvii and jvji,

Dk � Akðv;vÞ ¼ Akði; jÞ ¼ Ci;kC
y
k;j

n o
: ð6Þ

What follows, the elements of the corresponding joint probability
matrix Pkðv;vÞ read:

Pkði; jÞ ¼ jAkði; jÞj2 ¼ jCi;kj2jCj;kj2 ¼ pðkÞ
i pðkÞ

j ; ð7Þ
with normalization conditionXn
i¼1

Xn
j¼1

Pkði; jÞ ¼
Xn
i¼1

pðkÞ
i ¼

Xn

j¼1

pðkÞ
j ¼ 1: ð8Þ

Recalling Bayes’s theorem [38], which refers to the symmetry of
probabilities of simultaneous events, we may write

Pkði; jÞ ¼ PkðijjÞpðkÞ
j ¼ PkðjjiÞpðkÞ

i ¼ Pkðj; iÞ; ð9Þ
where PkðjjiÞ is the corresponding conditional probability of the jth
vector state given the ith one (from the statistical point of view, the
superposition of states leads to uncertainty of the exact quantum-
mechanical state identification); comparing the above formula with
(7) we straightforwardly get

PkðijjÞ ¼ pðkÞ
i ; and PkðjjiÞ ¼ pðkÞ

i ; ð10Þ
which implies that in the superposed state jwkithe statistics of jvji
and jvii states from a large number of measurements on replicas
of the system are independent (no correlation). Therefore, the con-
ditional probability (transition) matrix PkðvjvÞ is a first-order
matrix and comprises the exact copies of the probability vector

pðkÞ ¼ pðkÞ
i

n o
in each row, i.e.

PkðvjvÞ ¼ pðkÞ; . . . c;pðkÞ� �T
; diagPkðvjvÞ ¼ pðkÞ: ð11Þ

If the quantum system in question is described exactly by a single
superposed vector, jwki, then pðkÞ represents a stationary probability
distribution in a Markov sense [39] and, in accordance with the
Perron-Frobenius theorem [40],

lim
x!1

PkðvjvÞ½ � x ¼ 1PkðvjvÞ; ð12Þ

it represents a normalized left eigenvector of the conditional prob-
ability matrix associated with the unit eigenvalue; in quantum
mechanics, this state is usually referred to as the pure state. It is
worth noting that for any normalized distribution
p0 ¼ ðp0

1; . . . c;p
0
nÞ the transition matrix PkðvjvÞ always recovers a

stationary distribution, i.e.

pðkÞ ¼ PkðvjvÞTp0: ð13Þ
Unlike the pure state, a mixed quantum state generally does not

reflect proper quantum-state features (so it is not possible to
assign a state vector to the system). Instead, it constitutes a statis-
tical ensemble of pure states jwkif g given by the probability vector
p ¼ pkf g and the associated density operator in the following form:

D̂ ¼
Xn

k¼1

pkD̂k ¼
Xn
k¼1

pkjwkihwkj;
Xn
k¼1

pk ¼ 1: ð14Þ

In the basis of pure state vectors jvii
� �

it reads

D̂ ¼
Xn

i¼1

Xn
j¼1

P̂iD̂P̂j ¼ jviCpCyhvj ¼ jviDhvj; ð15Þ

and hence

D ¼ CpCy ¼ Di;j ¼
Xn

k¼1

pkC
y
k;iCj;k

( )
: ð16Þ

In contrast to its pure-state counterpart, bD is generally not
idempotent,

bD2 – bD; Xn
j¼1

jDi;jj2 – Di;i ¼ pi; ð17Þ

which means that the element of the symmetric matrix D no longer
represents a probability amplitude of simultaneous events and the
probability distribution in p ¼ diagD is not stationary in a Markov’s
sense. However, a special case of statistical ensemble with the asso-
ciated idempotent density operator (up to a constant) is a uniform
probabilistic mixture of m pure states jwkif g. For the sake of sim-
plicity let us assume that

p ¼ m�1; . . . c;m�1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m

; 0; . . . c;0|fflfflfflfflffl{zfflfflfflfflffl}
n�m

8<:
9=;: ð18Þ
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