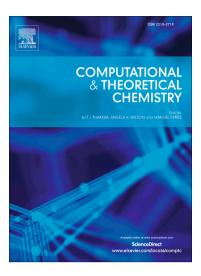
Accepted Manuscript

Computational study on the mechanisms and reaction pathways of the Brominated Alkyl Radical (CHBr₂/CBr₃) with NO₂ reactions

Yunju Zhang, Ruojing Song, Yuxi Sun, Jingyu Sun, Yong-guo Liu, Rongshun Wang


PII: S2210-271X(17)30326-2

DOI: http://dx.doi.org/10.1016/j.comptc.2017.07.006

Reference: COMPTC 2568

To appear in: Computational & Theoretical Chemistry

Received Date: 19 April 2017 Revised Date: 9 July 2017 Accepted Date: 10 July 2017

Please cite this article as: Y. Zhang, R. Song, Y. Sun, J. Sun, Y-g. Liu, R. Wang, Computational study on the mechanisms and reaction pathways of the Brominated Alkyl Radical (CHBr₂/CBr₃) with NO₂ reactions, *Computational & Theoretical Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.comptc.2017.07.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Computational study on the mechanisms and reaction pathways of the Brominated Alkyl Radical (CHBr₂/CBr₃) with NO₂ reactions

Yunju Zhang, 1,5* Ruojing Song, Yuxi Sun, 1,2,5 Jingyu Sun, Yong-guo, Liu, Rongshun, Wang, 3

¹Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University,

Mianyang 621000, PR China

²Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, PR
China

³Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal

University, Renmin Road 5268. Changchun, Jilin 130024, P. R. China

⁴Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key

Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and

Chemical engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei

435002, P. R. China

⁵Beijing Technology and Business University, Beijing 100048, PR China **Abstract:**

Mechanisms and reaction channels of the CHBr₂ and CBr₃ with NO₂ reactions have been studied by quantum chemistry methods. The calculated results indicating that the title reactions can take place on either the singlet or triplet potential energy surfaces (PES) and the pathways on the triplet PES should be much less competitive than that on the singlet PES. On the singlet surface, CHBr₂ radical can associate with NO₂ to barrierlessly generate adduct IM1 (CHBr₂NO₂), followed by isomerization to IM2a (*trans-cis-*CHBr₂ONO) and IM2b (*trans-trans-*CHBr₂ONO), which can easily

Download English Version:

https://daneshyari.com/en/article/5392342

Download Persian Version:

https://daneshyari.com/article/5392342

<u>Daneshyari.com</u>