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a b s t r a c t

Electron correlations in a two-electron two-dimensional ‘artificial atom’ or quantum dot (with harmonic
confining potential) in the presence of a uniform magnetic field in an excited singlet state are studied via
quantal density functional theory (QDFT). QDFT allows for the separation of the electron correlations due
to the Pauli exclusion principle and Coulomb repulsion, as well as the determination of the contribution
of these correlations to the kinetic energy. The QDFT mapping is from the excited state of the quantum
dot to one of noninteracting fermions in their ground state possessing the same basic variables of the
density and physical current density, and the same orbital and spin angular momentum. A detailed anal-
ysis of these correlations in terms of their quantal sources, the corresponding ‘classical’ fields, and result-
ing potentials and energies is presented. The key conclusions are that as in natural atoms, the
contributions of the Pauli and Coulomb correlations relative to the total energy for the excited state,
are less than but of the same order of magnitude as those for the ground state of a quantum dot.
However, in contrast, the correlation-kinetic contributions are an order of magnitude greater than those
for a quantum dot in its ground state. These correlations constitute nearly 75% of the kinetic and 25% of
the total energy. This result is consistent with prior work on low electron density Wigner systems in
three-dimensions in which correlation-kinetic effects too play a significant role. The significance of these
correlations to traditional excited state density functional theory is noted.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

As a result of advances in semiconductor technology over the
past few decades, it is possible to create ‘artificial atoms’ in which
the motion of the electrons is confined to two dimensions [1–4].
This is achieved by creating a thin (10 nm) quantum well within
a layer of a semiconductor (GaAs) of lateral width 100 nm sand-
wiched between two layers of another semiconductor (AlGaAs).
There is no motion perpendicular to the well. The free motion of
the electrons laterally is confined by a field so as to create the ‘ar-
tificial atom’ or quantum dot. The size of the quantum dot can be
further reduced by application of a perpendicular magnetic field.
The few electron ‘artificial atom’ or quantum dot possesses the
same electronic structure characteristics as that of a regular atom.
There is, however, a fundamental difference between the natural
and ‘artificial’ atom which is arrived at via both experiment [5–8]
and theory [9] performed on the latter. Whereas in a natural atom
the electrons are confined to the nucleus by a Coulomb potential,

those in the quantum dot are confined to the atom center harmon-
ically. In particular, there is support for the harmonic confinement
via the Generalized Kohn theorem [3,10–16]. As a consequence, the
wave function of a quantum dot does not exhibit a cusp at the
atom center. It does satisfy the two-dimensional electron-
electron coalescence constraint [17]. Another important difference
is that the size of the quantum dot can be about an order of mag-
nitude greater than atoms occurring in nature: 2–6 nm vs 0.1 nm.
As a result, there is a lowering of the electron density, and in a
manner akin to the Wigner system [18–25], electron correlation
effects become more significant. This has been confirmed by vari-
ous calculations [3,4,26–29] on quantum dots. A striking result
[29] obtained via quantal density functional theory [30,31] for
the ground state of a two-electron quantum dot in a uniform
magnetic field was the significance of correlation-kinetic effects.
These are contributions to the kinetic energy that are solely due
to correlations between the electrons. The contribution of
correlation-kinetic effects to the total energy was determined to
be greater than those of the Coulomb contributions, and over ten
percent of those due to the Pauli exclusion principle. The signifi-
cance of these correlation-kinetic effects thus mirror what occurs
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in the low density Wigner regime [18,19]. In the present paper we
study the electron correlations in an excited singlet state of a quan-
tum dot (with a harmonically confining potential) in the presence
of a uniform magnetic field. The study is performed via quantal
density functional theory (QDFT) [30,31].

The quantum dot to be studied may be described as a system of
N electrons in an electrostatic EðrÞ ¼ �$vðrÞ and magnetostatic
BðrÞ ¼ r�AðrÞ field with orbital L and spin S angular momen-
tum, and where fvðrÞ;AðrÞg are the scalar and vector potentials.
Stationary-state QDFT in this instance [30,32] constitutes the map-
ping from any state of such a system to one of noninteracting fer-
mions possessing the same density qðrÞ, physical current density
jðrÞ, orbital L and spin S angular momenta. The reason for the map-
ping to a model system with the same properties fqðrÞ; jðrÞg stems
from the first Hohenberg-Kohn theorem [33]. The theorem proves
that in the presence of only an electrostatic field there is a bijective
relationship between the nondegenerate ground state density qðrÞ
and the external scalar potential vðrÞ. The constraint in the proof is
that of fixed electron number N. Hence, knowledge of this density
uniquely determines the system Hamiltonian to within a constant,
and thereby via solution of the Schrödinger equation, the wave
functions of the system. The ground state density is thus said to
be a basic variable of quantum mechanics.

In the added presence of a magnetic field in which the interac-
tion of the field with both the orbital and spin angular momenta is
considered, the corresponding Schrödinger-Pauli Hamiltonian
[34,35] in a.u. (charge of electron �e; jej ¼ �h ¼ m ¼ 1 together with
the assumption of c ¼ 1) is

bH ¼ 1
2
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p̂k þAðrkÞ½ �2 þ 1
2

X
k;l

0 1
jrk � rlj þ

X
k

vðrkÞ þ
X
k

BðrkÞ � sk;

ð1Þ
where the operator terms correspond to the physical kinetic (with
canonical momentum p̂k ¼ �irrk ), electron-interaction, external
potential, and magnetic field-spin interaction with s the electron
spin momentum vector. In recent work, it has been proved
[30,35] that in the presence of an electrostatic and uniform magne-
tostatic field BðrÞ ¼ Biz the basic variables are the nondegenerate
ground state densities fqðrÞ; jðrÞg. In this case the constraints are
those of fixed electron number N, orbital L and spin S angular
momentum. Thus, knowledge of this fqðrÞ; jðrÞg uniquely determi-
nes the scalar vðrÞ and vector AðrÞ potentials to within a constant
and the gradient of a scalar function, respectively, thereby the
Hamiltonian, and consequently the system wave functions. When
the interaction of the magnetic field is only with the orbital angular
momentum, then the last term in the above Hamiltonian is absent.
In this case the basic variables are again the densities fqðrÞ; jðrÞg
with the constraints of fixed electron number N and orbital angular
momentum L. This constitutes a special case.

An attribute of QDFT is that it is possible to separate the contri-
butions to the total energy from electron correlations due to Cou-
lomb repulsion and those arising from the Pauli exclusion principle
for the same system. (The definition of Coulomb correlations in tra-
ditional quantum chemistry differs in that a separate Hartree-Fock
theory calculation corresponding to a different density needs to be
performed.) Additionally, it is possible to separately obtain the cor-
relation contributions to the kinetic energy, viz. the correlation-
kinetic component of the energy.

Finally, within QDFT, if in addition to possessing the same den-
sities fqðrÞ; jðrÞg, the model fermions are subject to the same exter-
nal potentials fvðrÞ;AðrÞg, then it is proved [30,32] that the only
correlations that must be accounted for in the mapping are those
due to the Pauli exclusion principle, Coulomb repulsion and
correlation-kinetic effects. Thus, it is only these correlations that
appear in the expressions for the electron-interaction component

of the local effective potential and total energy of the model
fermions.

The equations of QDFT in the presence of a uniform magnetic
field incorporating the recent developments [30,32,35] are given
in Section 2. The application of QDFT to a quantum dot in an excited
singlet state together with a discussion of the results is provided in
Section 3. The principal conclusions are summarized in Section 4.
The relevance of the present results to traditional excited state den-
sity functional theory is also discussed in this section.

2. Quantal density functional theory

For a system of N electrons in an external electrostatic
EðrÞ ¼ �$vðrÞ and magnetostatic BðrÞ ¼ r�AðrÞ field, and in a
singlet state, the Hamiltonian of Eq. (1) reduces to

bH ¼ 1
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X
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with the corresponding Schrödinger equation beingbHWðXÞ ¼ EWðXÞ; ð3Þ
fWðXÞ; Eg the eigenfunctions and eigenvalues;
X ¼ x1; . . . ;xN; x ¼ rr; ðrrÞ the spatial and spin coordinates of each

electron. The energy E is the expectation E ¼ hWðXÞjbHjWðXÞi. The
corresponding density qðrÞ and physical current density jðrÞ are
the expectations

qðrÞ ¼ hWðXÞjq̂ðrÞjWðXÞi; ð4Þ
and

jðrÞ ¼ hWðXÞĵjðrÞjWðXÞi; ð5Þ
where the respective operators are
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X
k
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The system of electrons defined by the Hamiltonian of Eq. (2) is
then mapped via QDFT to one of noninteracting fermions possess-
ing the same fqðrÞ; jðrÞg and subject to the same external fields.
The corresponding differential equation for the model fermion
orbitals /kðxÞ is
1
2

p̂k þAðrkÞð Þ2 þ v sðrÞ
� �

/kðxÞ ¼ �k/kðxÞ : k ¼ 1; . . . ;N; ð8Þ

with the local potential

vsðrÞ ¼ vðrÞ þ veeðrÞ; ð9Þ
and where veeðrÞ is the local electron-interaction potential in which
all the many-body effects are incorporated. The corresponding wave
function is the Slater determinant Uf/kg with the fqðrÞ; jðrÞg being

the expectations of the operators fq̂ðrÞ; ĵðrÞg taken with respect to
Uf/kg.

The potential veeðrÞ is the work done to move a model fermion
from a reference point at infinity to its position at r in the force of a
conservative effective field F eff ðrÞ:

veeðrÞ ¼ �
Z r

1
F effðr0Þ � d‘0; ð10Þ

where

F effðrÞ ¼ EeeðrÞ þZtc ðrÞ; ð11Þ
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