Accepted Manuscript

Density Functional Theory Studies of the Uncatalysed Gas-Phase Oxidative Dehydrogenation Conversion of *n*-Hexane to Hexenes

N.E. Damoyi, H.B. Friedrich, H.G. Kruger, D. Willock

PII:	S2210-271X(17)30259-1
DOI:	http://dx.doi.org/10.1016/j.comptc.2017.05.026
Reference:	COMPTC 2521
To appear in:	Computational & Theoretical Chemistry
Received Date:	22 March 2017
Revised Date:	19 May 2017
Accepted Date:	19 May 2017

Please cite this article as: N.E. Damoyi, H.B. Friedrich, H.G. Kruger, D. Willock, Density Functional Theory Studies of the Uncatalysed Gas-Phase Oxidative Dehydrogenation Conversion of *n*-Hexane to Hexenes, *Computational & Theoretical Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.comptc.2017.05.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Density Functional Theory Studies of the Uncatalysed Gas-Phase Oxidative Dehydrogenation Conversion of *n*-Hexane to Hexenes

N.E. Damoyi^{a,*}, H.B. Friedrich^b, H.G. Kruger^c and D. Willock^d

^aDepartment of Chemistry, Mangosuthu University of Technology, Box 12363, Jacobs, 4026, South Africa, E-mail: damoyi@mut.ac.za

^bSchool of Chemistry, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa

^cCatalysis and Peptide research unit, School of Pharmacy, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa

^dSchool of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK

Keywords: DFT, ODH, n-hexane, RDS, mechanism.

ABSTRACT

Density Functional Theory (DFT) modelling studies were conducted for the activation of *n*-hexane in the gas-phase under experimental conditions of 573, 673 and 773K.

The aim of the study was to establish the most favourable radical mechanism for the oxidative dehydrogenation (ODH) of *n*-hexane to 1- and 2-hexene. Modelling of the 3-hexene pathway was omitted due to absence of this product in laboratory experiments. Computations were performed using GAUSSIAN 09W and molecular structures were drawn using the GaussView 5.0 graphics interface. The B3LYP hybrid functional and the 6-311+g(d,p) basis set were utilized for all the atoms. The most kinetically and thermodynamically favourable pathways are proposed based on the determination of the relative total energies ($\Delta E^{\#}$, ΔE , $\Delta G^{\#}$ and ΔG) for the different reaction pathways. The initial C-H activation step is β -H abstraction from *n*-hexane (C₆H₁₄) by molecular oxygen (O₂) to form the alkoxy (C₆H₁₃O·) and hydroxyl (·OH) radicals. This is proposed as the rate-determining step (RDS) with the calculated $\Delta E^{\#}$ = +42.4 kcal/mol. Two propagation pathways that involve, separately, the C₆H₁₃O· and ·OH radicals may lead to the formation of 2-hexene. In both the propagation pathways, the $C_6H_{13}O$ and ·OH radicals activate further C_6H_{14} molecules to produce C_6H_{13} OH and H_2O , respectively, and the alkyl radicals ($\cdot C_6 H_{13}$). Thereafter, one pathway involves the interaction of the $\cdot C_6 H_{13}$ radical with further molecular O₂, and leads to a second C-H activation step that yields 2-hexene and the peroxy radical (\cdot OOH). The other pathway is associated with hydrogen transfer from the \cdot OOH radical to C₆H₁₃OH that is produced earlier, leading to water and the alkyl peroxy radical ($C_6H_{13}OO$). The $C_6H_{13}OO$ radical undergoes intramolecular H-abstraction to yield 2-hexene and the 'OOH radical, and the latter disproportionate through intermediate \cdot OH radicals to produce O₂ and H₂O in the termination step.

^{*} Corresponding author e-mail address: damoyi@mut.ac.za

Download English Version:

https://daneshyari.com/en/article/5392398

Download Persian Version:

https://daneshyari.com/article/5392398

Daneshyari.com