
Conquering the hard cases of Lennard-Jones clusters with simple recipes

Mark Dittner, Bernd Hartke ⇑
Institute for Physical Chemistry, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany

a r t i c l e i n f o

Article history:
Received 1 September 2016
Received in revised form 24 September
2016
Accepted 26 September 2016
Available online 28 September 2016

Keywords:
Non-deterministic global optimization
Evolutionary algorithms
Cluster structures
Order parameters
Deceptive energy landscapes

a b s t r a c t

Lennard-Jones clusters are the best-known benchmark for global cluster structure optimization. For a few
cluster sizes, the landscape is deceptive, featuring several funnels, with the global minimum not being in
the widest one. More than a decade ago, several non-deterministic global search algorithms were pre-
sented that could solve these cases, mostly using additional tools to ensure structural diversity.
Recently, however, many publications have advertised new search algorithms, claiming efficiency but
being unable to solve these harder benchmark cases. Here, we demonstrate that evolutionary algorithms
can solve these hard cases efficiently, if enhanced with one of several very different diversity measures
(niching) which were set up in an ad-hoc way, without extensive deliberation, testing or tuning.
Hence, these hard benchmark cases should definitely be considered solvable. Additionally, these niching
concepts offer insights into the different Lennard-Jones structural types, and into the way niching works
in evolutionary algorithms.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Clusters of n atoms bound exclusively by pairwise Lennard-

Jones (LJ) model potentials of the form eE ¼ 4
P

i<j
~r�12
ij � ~r�6

ij

� �
(with

the energy E and the pair distance r in reduced units of the pair
well depth and distance) have been a standard benchmark for glo-
bal cluster structure optimization algorithms for a long time [1–
17]. As frequently noted in these and other studies, the global min-
ima for most of the cluster sizes n are Mackay isosahedra and easy
to find, despite the exponential increase of search space size with
n. However, for a few isolated cluster sizes, the structure of the true
global minima is different: decahedral for n = 75, 76, 77, 102, 103,
104, face-centered cubic (fcc) for n = 38, and tetrahedral for n = 98.
Astonishingly, the latter case was discovered only in 1999 by Leary
and Doye [18], i.e., it was missed by several of the first studies cited
above, which documents that it is hard to find.

These isolated occurrences of different global minimum struc-
tures are linked to partially filled structural shells and the different
ways structural strain (deviations from ideal pair distances) can be
accommodated in different structural types, as clearly illustrated
by Doye et al. [19]. These authors also demonstrated that locating
the true global minima in these cases is hard because most of
search space is still dominated by the standard icosahedral pattern
and its associated funnel-like landscape, while the different struc-

tural patterns (also containing the global minimum) reside only in
a small region of search space, isolated from the remainder by high
energy barriers.

This also explains why the case n = 38 was considered very hard
in the early days of LJ cluster studies, despite its small size, and
why it is apparently acceptable to admit problems with the larger
hard cases in publications up to the present day, despite explo-
rations towards sizes up to n = 1000 and beyond quite some time
ago [20]. For example, Lv et al. [10] reported good results for
n = 75 but failed to find the Td minimum for n = 98 in 7 out of 10
cases. Laykhov et al. [11] called n = 75 ‘‘exceptionally complex”.
Rogan et al. [12], Zhang et al. [16] and Avendaño-Franco et al.
[17] even failed to find the decahedral global minimum for
n = 75, the latter two in publications of the present year 2016. This
is astonishing, given that 10–15 years earlier, several publications,
e.g., Refs. [3,21,22], had already presented recipes that successfully
reduced the search effort for several or all of these hard cases.
Therefore, the present contribution serves to reconfirm those ear-
lier works: Present-day publications aspiring to conform to the
state of the art should be able to deal with these hard cases,
because this does not require specialized, fine-tuned recipes but
merely a somewhat more judicious and robust design of the search
algorithm.

In fact, what is needed has been known since the early days of
non-deterministic global search and has been re-analyzed many
times, also in recent years [23]: The practical strength of these
algorithms lies in their deliberate refusal to cover all search space;
instead the search is narrowed down on ‘‘promising regions”. This
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can lead to very large performance enhancements, compared to
deterministic search, which always has to cover all search space,
at least indirectly. In many cases in practice, this makes the differ-
ence between being able to solve a global optimization problem
and having to give up. The price to pay for this advantage is that
so-called ‘‘deceptive” search landscapes can trap non-
deterministic search in regions that do not contain the global min-
imum. Hence, mechanisms are needed to avoid such a trapping.

Obviously, for LJ clusters, the trick is to avoid that all search
power is spent within the broad icosahedral basin, which acts as
a strong attractor for non-deterministic search. This has been done
already, for example with niching in Evolutionary Algorithms (EAs)
[3]. As a side note, we are very much in favor of EA nomenclature to
become ‘‘less inspired” [24,25]; in this sense ‘‘niching” should be
called ‘‘introduction of an order parameter” instead. Nevertheless,
to make contact to previous EA literature, we continue to use the
biologically inspired term ‘‘niching” here. In Ref. [3], structures
similar to the icosahedral and decahedral type were differentiated
by rotating each cluster into an orientation in which a two-
dimensional plane projection of its atom positions was least dense,
and then calculating this density as the fraction of occupied
squares in a discretization of this plane. Icosahedral structures
have a significantly higher projected density than decahedral ones.
The actual niching then allows only a small number of individuals
(much smaller than the whole population) to have similar pro-
jected densities. This projection niching in Ref. [3] was very much
ad-hoc, tainted with a priori knowledge, and computationally
expensive, since the desired differentiation can only be made very
close to the ideal cluster orientation, requiring a long sequence of
small incremental test rotations, at each of which the 2D projection
has to be evaluated.

Within their adaptive immune optimization algorithm (AIOA),
Cheng et al. [21] have based their niching-like diversity concept
on differences in nearest-neighbor connectivity table entries,
between two structures. This depends on the proper choice of a
cutoff criterion, to discern small differences in nearest-neighbor
distances. Otherwise, with a looser cutoff criterion, all inner atoms
always have 12 nearest neighbors, as shown below and as to be
expected for closest packings between particles with non-
directional interactions. However, with proper choice of this cutoff,
these authors achieved impressive efficiency for the LJ hard cases,
including n = 98.

Rossi and Ferrando [22] implemented a similar niching-like
concept in Monte Carlo with Minimization (MCM) [26], also known
as basin-hopping (BH) [27,28]. In their implementation, several
simultaneous MCM walkers repel each other in an order-
parameter space. With suitable choice of these order parameters,
exploration can be diverted into different funnels. For LJ clusters,
they found significant search efficiency enhancement for n = 38
and 75. To differentiate between icosahedral, decahedral and fcc
structures, they chose the common neighbor analysis (CNA) [29–
32].

CNA is one of several ways [33] to categorize nearest neighbor
arrangements of atoms. It is used frequently to detect structural
faults, domain boundaries and phase transitions in bulk MD simu-
lations [34,35], but also for structural characterization of clusters
[36,37]. In CNA, to each atom pair, an integer triple ðm;n; kÞ is
assigned, with m nearest neighbors common to both atoms in
the pair, between which there are n bonds, and k bonds of these
form the longest connected chain. As pointed out by Ferrando
et al. [22,38,39], it is sufficient to monitor the CNA signatures
(5,5,5), (4,2,2) and (4,2,1) to distinguish icosahedral-,
decahedral- and fcc-structured clusters.

While Rossi and Ferrando have shown [22] that CNA-based dif-
ferentiation does help for the LJ hard cases n = 38 and 75, it is

unclear if it also works for n = 98 with the different Td structure.
Further possible downsides of CNA are that it is pair-based instead
of atom-centered, and that intuitive correspondences between the
ðm;n; kÞ designation and actual local neighborhood structures are
unclear (except for (5,5,5) which is normally linked to local 5-
fold symmetry axes).

To emphasize with the present contribution that special charac-
teristics of niching or diversity concepts are not important and that
LJ hard cases can be solved by essentially any reasonable concept
of this kind, we present two nichings that do have some aspects
of similarity with the earlier ones but also several differences,
and, most importantly, strongly differ from each other. Neverthe-
less, they achieve similar degrees of efficiency, when compared
with each other and with earlier results, as mentioned above.

The first niching concept is based on a different local neighbor-
hood categorization, which is atom-centered, can also differentiate
Td from icosahedral, decahedral and fcc, and is intuitively under-
standable. Hence, it also contributes insights into how these four
basic LJ structural types differ, at the level of local nearest-
neighbor arrangements. When this categorization is used to define
niches in an evolutionary algorithm, this enables the EA to solve all
these hard LJ cases with one and the same setting.

The other niching concept is based on the so-called Coulomb
matrix (CM in the following),M, which is used, e.g., also in Machine
Learning studies as common measure of similarity throughout the
chemical compound space (see Refs. [40,41] and references therein
for a small overview as well as restrictions of the measure used
here and Ref. [42] as a general investigation on similarity mea-
sures). Any cluster thus is represented by

MIJ ¼
0:5Z2:4

I for I ¼ J;
ZIZJ

jRI�RJ j for I – J;

(
ð1Þ

with the atomic nuclear charges Z and distances R between the
atoms I and J. The CM represents the Coulomb repulsion on the
non-diagonal elements and a polynomial fit of the nuclear charges
to the total energies of free atoms on the diagonal ones [43,44].
Note that in the case of non-mixed (atomic) LJ-clusters of this paper,
all nuclear charges are the same, such that this reduces effectively
to a matrix storing all N2 (redundant) distances between the atoms.
To construct a (dis-)similarity measure between two clusters, we
use the Euclidean norm of the diagonalized CMs:

dðM;M0Þ ¼ dð�;�0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Ij�I � �0Ij2
q

with � as ordered eigenvalues

of M. This now represents a translation-, rotation- and (atomic)
permutation-invariant measure. Note, though, that this descriptor
is not unique but coarsened, as in the eigenvalue vectors of the clus-
ters effectively only N items of information are included (the addi-
tional information carried by the eigenvectors is completely
discarded). However, as we want to form coarsened similarity
niches over the energy landscape, this is in our case no disadvan-
tage. Additionally, with a very small threshold on d, this can even
be used in most cases as identity check for LJ clusters of the sizes
studied here, despite the non-uniqueness.

2. Generic niching implementations

Global cluster structure optimization has been done here with
the universal, object-oriented OGOLEM package [45,46], which has
already been applied to a wide variety [9,47–53] of global opti-
mization tasks. To avoid serious serial bottlenecks, OGOLEM imple-
ments the generation-free pool concept [54]. A generic niching
implementation has been integrated with the pool concept allow-
ing for arbitrary niching criteria to be employed.
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