Accepted Manuscript

Structure Prediction of $(BaO)_n$ nanoclusters for n24 using an evolutionary algorithm

Susanne G.E.T. Escher, Tomas Lazauskas, Martijn A. Zwijnenburg, Scott M. Woodley

PII: S2210-271X(17)30017-8

DOI: http://dx.doi.org/10.1016/j.comptc.2017.01.010

Reference: COMPTC 2370

To appear in: Computational & Theoretical Chemistry

Please cite this article as: S.G.E. Escher, T. Lazauskas, M.A. Zwijnenburg, S.M. Woodley, Structure Prediction of $(BaO)_n$ nanoclusters for n24 using an evolutionary algorithm, *Computational & Theoretical Chemistry* (2017), doi: http://dx.doi.org/10.1016/j.comptc.2017.01.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structure Prediction of $(BaO)_n$ nanoclusters for $n \le 24$ using an evolutionary algorithm

Susanne G.E.T. Escher^a, Tomas Lazauskas^a, Martijn A. Zwijnenburg^a, Scott M. Woodley^{a,*}

^a University College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ

Abstract

Knowing the structure of nanoclusters is relevant to gaining insight into their properties for materials design. Computational studies predicting their structure should aim to reproduce experimental results. Here, barium oxide was chosen for its suitability for both computational structure prediction and experimental structure determination. An evolutionary algorithm implemented within the KLMC structure prediction package was employed to find the thermodynamically most stable structures of barium oxide nanoclusters $(BaO)_n$ with n=4 to 18 and 24. Evolutionary algorithm runs were performed to locate local minima on the potential energy landscape defined using interatomic potentials, the structures of which were then refined using density functional theory. BaO clusters show greater preference than MgO for adopting cuts from its bulk phase, thus more closely resemble clusters of KF. (BaO)4, (BaO)6, (BaO)8, (BaO)10 and (BaO)16 should be magic number clusters and each are at least 0.03 eV/BaO more stable than all other PBEsol local minima clusters found for the same size.

Keywords: inorganic nanoclusters, global optimization, evolutionary algorithm, computational modelling, barium oxide

Email address: Scott.Woodley@ucl.ac.uk (Scott M. Woodley)

 $^{^*} Corresponding \ Author$

Download English Version:

https://daneshyari.com/en/article/5392474

Download Persian Version:

https://daneshyari.com/article/5392474

Daneshyari.com