Microelectronic Engineering 107 (2013) 200-204

Contents lists available at SciVerse ScienceDirect

Microelectronic Engineering

journal homepage: www.elsevier.com/locate/mee

Barrier heights engineering of Al/p-Si Schottky contact by a thin organic interlayer

Wen Chang Huang^{a,*}, Tien-Chai Lin^b, Chia-Tsung Horng^a, Chien-Chou Chen^a

^a Department of Electro-Optical Engineering, Kun Shan University, No. 949, Da-Wan Rd., Yong-Kang Dist., Tainan City 71003, Taiwan, ROC
^b Department of Electrical Engineering, Kun Shan University, No. 949, Da-Wan Rd., Yong-Kang Dist., Tainan City 71003, Taiwan, ROC

ARTICLE INFO

 $A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

Article history: Available online 24 September 2012

Keywords: Schottky diode Barrier height Ideality factor Alq₃

The current–voltage (*I–V*) characteristics of the Al/Alq₃/p-Si Schottky diode shows rectified behavior with a potential barrier formed at the contact interface. The barrier height and the ideality factor values are 0.78 eV and 1.53, respectively. The barrier height of the Al/Alq₃/p-Si diode is larger than that (~0.58 eV) of the conventional Al/p-Si diode. It reveals that the organic film, Alq₃, controls the carrier transport of the diode at the contact interface. A linear relationship of $1/C^2$ vs. V plot under the reverse bias is shown and the effective barrier height is 0.69 eV by capacitance–voltage (*C–V*) measurement. The electrical characteristics of the diode are also discussed by using Norde's function and Cheung's method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The developments of organic semiconductors have attracted increasing interest as a result of their potential application in various electronic and electro-optical devices. The applications include optical switches [1], batteries [2], field effect-transistors [3], solar cells [4], organic light-emitting diodes [5]. The organic semiconductor also shows the advantages of low synthesis costs and relative easiness of handling. These advantages make these kinds of materials attractive for the previously mentioned applications.

The metal/semiconductor (MS) contact is an important technology in semiconductor devices applications. The properties of the barrier of the contact interface show great influence on the diode characteristics. The quality of the barrier is evaluated by the Schottky barrier height and the ideality factor, n. For an ideal case of a Schottky barrier diode (SBD), its barrier height is the difference between the metal work function of the contact metal and the election affinity of the semiconductor and the ideality factor n is equal to 1. In a practical SBD [6-8], the current-voltage (I-V) characteristics of the MS contacts usually deviate from the ideal thermionic emission (TE) current model. In general, the electrical characteristics of a Schottky diode are greatly controlled by the quality of the contact interface. The properties of the contact interface show a great influence on the device performance. For a metal/ organic/semiconductor Schottky barrier diode, the organic thin film on the semiconductor modifies the electronic properties of MS contacts. There are many scientists that are devoted to the study of the organic Schottky barrier diode. Campbell et al. [9]

0167-9317/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.mee.2012.09.003 introduced an organic thin film at the metal/semiconductor interface and thus changed the effective Schottky barrier height. They reported that the changes in the Schottky barrier height were more than 500 meV and the Schottky diodes with thin organic layers were superior to conventional Schottky diodes. Kılıcoglu et al. [10] reported an Al/tetraamide-I/p-Si diode with a barrier height value of 0.75 eV and an ideality factor value of 1.77. Aydoğan et al. [11] discussed the temperature dependent *I–V* characteristics of Al/Polypyrrole(PPy)/p-Si Schottky diode. Yakuphanoglu et al. [12] presented an Ag/Zn(Phen)g/p-Si diode and showed a barrier height of 0.71 eV with the ideality factor of 2.05. The Ag/FSS/p-Si Schottky diode [13] also found an improved Schottky barrier height compared to the conventional Ag/p-Si diode. Aydin et al. [14] presented an electrical characterization of Al/MEH-PPV/p-Si Schottky diode through *I–V* and *C–V* measurements. They showed that the organic interfacial layer formed at the metal/semiconductor substrate has a rectification behavior in which values of the Schottky barrier height and the ideality factor are greater than the conventional metal/semiconductor structures [15]. Therefore, the metal/organic/semiconductor Schottky diode not only shows the potential to improve the barrier height, but also attracts us to investigate the information about organic/inorganic interface.

In this paper, the organic material, Tris (8-hydroxyquinolinato) aluminum (Alq₃), is used to be an interfacial organic film between metal and silicon. The Alq₃ is a coordination complex wherein aluminum is bonded in a bidentate manner to the conjugate base of three 8-hydroxyquionline ligands [16]. Fig. 1 shows the chemical structure of Alq₃. It is one of the most widely used Hole Transport Layer (HTL) in organic light emitting diodes. The energy band gap of Alq₃ is 2.7 eV, which is referenced from the report of Ruhstaller et al. [17]. The HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) of the Alq₃ is 5.7

^{*} Corresponding author. Tel.: +886 6 2727175x530. E-mail address: wchuang@mail.ksu.edu.tw (W.C. Huang).

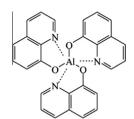


Fig. 1. The chemical structure of Alq₃.

and 3.0 eV, correspondingly. The Schottky diode, Al/Alq₃/p-Si, is designed to obtain a high quality electrical characteristic. The analyses of the *I*–*V* characteristics of the Schottky diodes were based on the thermionic emission model. The *C*–*V* measurement was used to evaluate the diode characteristics under the reverse bias. The values of R_s can be obtained by using a method developed by Cheung and Cheung's model [18] in the high current range of the *I*–*V* characteristics. The Norde's function [19,20] for the discussion of barrier height and series resistance was also stressed. The value of the series resistance will give us information about the discussion of the interfacial characteristics of the diode.

2. Experimental

The preparation of the Schottky diode was processed on a ptype Si (100) substrate with the resistivity of 5–10 Ω -cm. The silicon wafer was chemically cleaned by using the RCA cleaning process before the metal deposition. Aluminum was evaporated through a thermal evaporation system on the back surface of the substrate for ohmic contact of the diode. After the aluminum deposition, the sample was annealed at 550 °C for 5 min in a furnace system for the formation of ohmicity. The native oxide on the front surface of the substrate was removed in the buffered oxide etch (BOE) solution and finally the wafer was rinsed in de-ionized water for 30 s before forming the organic layer on the p-type Si substrate. The wafer with backside ohmic contact was then cut into pieces to form the thin film layer of Alq₃ on their front surfaces. Thermal evaporator was used to deposit the organic film, Alq₃, on the front surface of p-Si substrate in a vacuum of 4×10^{-5} Torr chamber. The deposition rate was about 0.1-0.2 nm/s, as determined using a quartz-crystal thickness monitor. The circle contact electrode was defined by using a shadow mask at the front surface of the sample during deposition. The contact electrode, Al, was chosen in the Schottky diode. The thickness of Al is 1000 Å, and the Schottky contact electrodes were circular with diameters of 200, 300 and 400 μ m, respectively. The *I–V* measurement was performed by using the semiconductor parameter analyzer. The C-V characteristic of the diode was also evaluated in the voltage range from -4 to 4 V at the frequency of 10 kHz.

3. Results and discussion

In the evaluation, the quality of a Schottky barrier diode, Schottky barrier height, ideality factor, and reverse leakage current are the crucial parameters. The current transport of a Schottky diode is due to the majority carriers and is described by the thermionic emission (TE) [15] over the interface barrier. The effective barrier height, ϕ_{b} , and the ideality factor, *n*, are determined by using the thermionic emission current voltage expression:

$$I = I_{\rm s} \left[\exp(\frac{q(V - IR_{\rm s})}{nkT}) - 1 \right]$$
⁽¹⁾

where

$$I_{\rm s} = AA^*T^2 \exp[-q\phi_{\rm b}/kT]$$

(2)

where *V* is the applied voltage, *q* is the electronic charge, *k* is the Boltzmann constant, *T* is the absolute temperature, *A* is the diode contact area, R_s is the series resistance of the diode, A^* is the effective Richardson constant, ϕ_b is the effective Schottky barrier height at zero bias, and *n* is the ideality factor. Theoretical A^* value of

tive Richardson constant, $\phi_{\rm b}$ is the effective Schottky barrier height at zero bias, and n is the ideality factor. Theoretical A^* value of 32 A-cm⁻² K⁻² is used for Si. The saturation current density, J_s , is obtained by extrapolating the linear region of the forward J-V curves to the zero applied voltage, and the ϕ_b values are calculated from Eq. 2. The values of the ideality factor, *n*, are obtained from the slope of linear region of forward J-V plots, and were derived from $n = q/kT[\partial V/\partial(\ln J)]$. Fig. 2 shows the *J*-V characteristics of the Al/Alq₃/p-Si. The saturation current density, J_s, of the diode is 8.45×10^{-6} Å/cm² at the room temperature measured sample. The effective Schottky barrier height which derived from the TE model is 0.78 eV at the 300 K measurement. Its ideality factor is 1.53 and shows a straight line over four decades of the plot. For the reverse leakage current, the current density of the diode is 1.48×10^{-4} A/cm² at the reverse bias voltage of -6 V. The value of the Schottky barrier height of Al/Alq₃/p-Si is higher than that $(\sim 0.58 \text{ eV})$ of the conventional Al/p-Si diode [15]. It shows a comparable value of barrier height with that of some other organic interfacial layered Schottky diode. Kılıcoglu et al. [10] reported a barrier height of 0.75 eV in the Al/tetraamide-I/p-Si diode, Aydoğan et al. [11] presented a Al/Polypyrrole(PPy)/p-Si Schottky diode with a barrier of 0.78 eV, and Yakuphanoglu et al. [12] showed a barrier height of 0.71 eV in the Ag/Zn(Phen)q/p-Si Schottky diode [12], that of 0.72 eV in the Ag/FSS/p-Si Schottky diode [13], and that of 0.80 eV in the Al/MEH-PPV/p-Si diode [14]. The value of 1.53 of n for the Al/Alq₃/p-Si Schottky diode indicates the presence of an insulator layer on the inorganic semiconductor surface [21-23]. That is, there is probably an insulating oxide layer between Alq₃ and p-Si substrate, for the front surface of the silicon substrate is exposed to air before the deposition of the organic Alq₃ layer. The interfacial oxide layer can be formed by vapor absorbed onto the surface of substrate.

The C–V characteristics of the diode measured from 4 to -4 V at the frequency of 10 kHz is shown in Fig. 3. The capacitance decreases as the applied voltage derived from 4 to -4 V which reveals that a depletion region exists at the Alq₃ and Si substrate, and the width of the depletion region increases with the reverse bias. For the forward biased capacitance, the capacitance of the diode is 2.93 nF at the forward voltage of 4 V. The junction of the p-Si substrate becomes more depleted as the applied voltage was reversed.

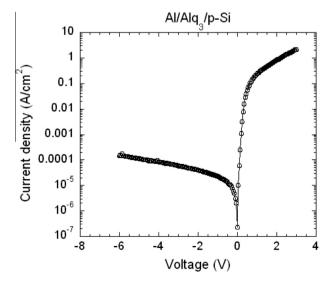


Fig. 2. The J–V characteristics of the Al/Alq₃/p-Si diodes.

Download English Version:

https://daneshyari.com/en/article/539267

Download Persian Version:

https://daneshyari.com/article/539267

Daneshyari.com