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a b s t r a c t

Emission from a mixture of two isotope species in slab geometry is examined for slab thickness that is a
multiple of half-wavelength of the resonant radiation. The forward and backward outgoing fluxes for dif-
ferent detuning between the two isotope species resonance frequencies are computed. The values of the
initial population giving equal forward and backward fluxes or making the ratio of these two quantities
an extremum are obtained. The characteristic temporal features of the field intensities and of their spec-
tral distributions at the previous critical values are calculated.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Emission from a mixture of two isotopes has been a topic of
continuing interest since the early work on laser isotopes separa-
tion [1–5]. In a recent publication [6], for 1D geometry, the
spatio-temporal electrodynamics of a mixture of two isotope spe-
cies, where initially only one of the species was excited (partially
or fully) while all atoms of the other species are left in the ground
state was examined. In particular, the general features of the tem-
poral development of the emission from the system at the exit
planes, and the spatial distribution of the degree of excitation for
each of the two atomic species at different times were investigated
as function of the detuning between the two isotopes resonance
frequencies and the degree of the initial excitation of the excited
species.

In a separate study of radiation from an ensemble of a single
species [7], it was shown that there was extreme ultra-sensitivity
to initial conditions of the ratio of the forward to backward emis-
sion fluxes in a slab having a thickness which is a multiple of half-
wavelength when the atoms of the ensemble are nearly all
inverted: this ratio can vary by nearly one and a half order of mag-
nitude for a slight variation in the initial atomic excitation.

In this paper, the characteristics emission features of the two
species mixture are obtained for the case that the slab thickness
is a multiple of half the wavelength of the radiation corresponding
to the free atomic resonance frequency, the system is initially
coherently excited, and the inversion is almost complete.

The main results obtained in this manuscript can be summa-
rized as follows:

� The two-species system is also ultra-sensitive to the initial
value of the population difference of the excited species [8–14].

� The values of the initial population difference where the for-
ward and backward emission fluxes are equal and where either
flux is extremal are shifted from their values for the system
with only one species present and these differences are com-
puted as functions of the detuning between the resonance fre-
quencies of the two species.

� The contrast function, defined as the ratio of the maximal to
minimal values of the ratios of the forward to backward fluxes,
is shown to be dependent, as well, on the detuning between the
resonance frequencies of the two isotopic species resonance fre-
quencies (see graphical abstract). The value of the contrast
function is found to be largest for the case of a single species
present.

The theoretical model and the numerical techniques used to
obtain the present results follow structurally the same algorithm
as that used in deriving the results in [6]. In the present calculation,
the system is taken to be initially coherently prepared. The accu-
racy of the algorithm used has been, as well, enhanced relative to
that used in [6] (by increasing the size of the functions basis) to
properly deal with the minute variations in the initial conditions
required for the different cases considered here. All computations
performed use the basis formed by the eigenfunctions of the 1D
Lienard–Wiechert kernel [15–21].
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The paper is organized as follows: in Section 2, for the purpose
of ensuring that this presentation be self-contained, I review the
expressions of the Maxwell–Bloch equations for the two isotopes
mixture in the normalized coordinates suitable for the present
problem; in Section 3, I summarize the mathematical method used
for reducing the partial differential equations representing the MB
set into an infinite set of coupled first order ordinary differential
equations for the expansion coefficients in the basis formed by
the eigenfunctions of the 1D Lienard–Wiechert kernel, and I give
explicitly the initial conditions for these expansion coefficients
for the case of initial coherent excitation; in Section 4, I give the
results of the numerical computations. In Section 5, I summarize
and conclude.

2. Maxwell–Bloch equations in normalized coordinates

In this Section, I review quickly the form of the Maxwell–Bloch
equations for this system when written in normalized variables
form, convenient for the present problem. I assume that the mix-
ture is formed by equal concentration of the two isotopes, and that
the transition dipole moment for both isotopes are equal.

Defining the normalized variables for a slab of thickness 2z0, as:

Z ¼ z=z0; T ¼ Ct; C1 ¼ c1=C; C2 ¼ c2=C; u0 ¼ k0z0;

Xc;1;2;L ¼ xc;1;2;L=C;

where Xc;1;2;L are respectively the normalized electric field carrier
frequency, the atomic transition frequency for species 1, the atomic
transition frequency for species 2, and the Lorentz shift. In this sys-
tem of units, all quantities are normalized to the parameter of inter-

atomic cooperativity C ¼ 4pN}2

�hV , where N is the total number of
atoms, V is the slab volume, and } is the reduced dipole moment
of the atomic transition (its normalization is uniquely determined
when given as function of the isolated atom decay rate, see below).
The relaxation decay rates c1; c2 refer respectively to the longitudi-
nal decay rate, and the resonant transverse decay rate. The normal-
ized transverse resonant decay rate C2 is due to the instantaneous
dipole–dipole interaction between identical atoms, and the value
of the normalized Lorentz shift is equal to 1/3. The isolated atom

decay rate c1 ¼ 4
3}

2k30=�h specifies the longitudinal decay rate of each
of the species. To ensure that the independent particles model is
valid, I shall consider only the cases where the detuning (denoted
D) between the resonance frequencies is at least 4C2.

The Maxwell–Bloch equations in 1D are given in these units, for
n ¼ Cz0=c � 1, where c is the speed of light in vacuum, by
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where CT ¼ C2 þ C1
2 ; and vð1;2Þ (complex) and nð1;2Þ (real) describe

respectively the atomic polarization density and the degree of exci-

tation of each species (in the present paper, ni ¼ 1 if all atoms of
species i are in the ground state and ni ¼ �1 if all atoms of species
i are excited), and w represents the normalized Rabi frequency of
the complex total electric field envelope.

3. Eigenfunction decomposition

The system described by Eqs. (1)–(3) is solved by expanding
each of the quantities wðZ; TÞ; niðZ; TÞ; viðZ; TÞ in the basis formed
by the eigenfunctions of the integral equation

KsusðZÞ ¼
u0
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Z 1
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The expressions of the normalized eigenfunctions are
respectively:
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where the normalization constants are

No
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; ð7Þ
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and the wavevectors ðv0
s ; ve

sÞ are solutions of the transcendental
equations
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The integral equation eigenvalues are given by:
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u2
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s Þ2
: ð11Þ

The integral equation eigenfunctions obey pseudo-orthonormal
relations and form a complete set of bases functions for all func-
tions over the interval: �1 6 Z 6 1.

In this algorithm, the various dynamical variables are decom-
posed in the eigenfunctions basis, as follows
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where the tilde over the eigenfunction is used to indicate that I am
using the normalized eigenfunctions in the expansions.

Combining Eqs. (3) & (4), one deduces:

eo;es ðTÞ ¼ i2Ko;e
s ðpo;e

1;sðTÞ þ po;e
2;sðTÞÞ ð15Þ

The set of partial differential equations given by Eqs. (1)–(3),
augmented by Eq. (8) then combine to give an infinite dimensional
set of coupled nonlinear ordinary differential equations for the
expansion coefficients po;e

i;s ðTÞ & go;e
i;s ðTÞ.

The initial conditions for a system where the species initially
inverted was coherently excited and the other species is left in
the ground state are:
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