
A Chebyshev expansion of hydrodynamical fields for ultrafast vibrational
wave packet dynamics

Lidice Cruz-Rodríguez a, Jean Christophe Tremblay b,⇑, Aliezer Martínez-Mesa a, Llinersy Uranga-Piña a

aDynAMoS (Dynamical processes in Atomic and Molecular Systems), Facultad de Física, Universidad de la Habana, Cuba
b Institut für Chemie und Biochemie, Freie Universität Berlin, Germany

a r t i c l e i n f o

Article history:
Received 30 October 2015
Received in revised form 24 December 2015
Accepted 5 January 2016
Available online 11 January 2016

Keywords:
Vibrational dynamics
Quantum dynamics
Trajectory methods

a b s t r a c t

A computational method based on the Chebyshev polynomial expansion of the hydrodynamical fields is
applied to the quantum trajectory modeling of the one-dimensional vibrational dynamics. The spatial
derivatives of the fields are computed using the Chebyshev polynomial recursion, and they are subse-
quently used to numerically integrate the equations of motion for the fluid particles. The performance
of the proposed algorithm is assessed via the comparison with the analytical solutions for the time evo-
lution of a Gaussian wave packet on harmonic potential, and with the results of quantum wave packet
propagation on an anharmonic potential. The scheme is found to provide an accurate representation of
both the molecular density and the quantum potential, even if low-order truncated expansions are used.
The quantum trajectory propagation using the Chebyshev expansion method yields results in close agree-
ment with the corresponding benchmarks, regarding both the time-dependent molecular distributions
and the computed observables.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The emergence and the subsequent development of time-
resolved spectroscopic techniques have triggered, during the last
decades, a large number of experimental and theoretical investiga-
tions of dynamical processes at the molecular scale [1,2]. These
investigations allow the identification of the mechanisms of funda-
mental physical and chemical phenomena, to elucidate the energy
redistribution pathways and to translate the experimental signals
into an explicit picture of the underlying atomic motion. The
research on time-dependent processes at the microscopic level is
also stimulated by the possibility to use the insight provided by
these studies in the design of novel nanoscale devices, or to achieve
the long-endeavored goal to steer chemical reactions in specific
directions.

Quantum mechanical phenomena are at the essence of any
first-principle description of the microscopic structure of matter.
A variety of phenomena such as particle delocalization and inter-
ference, tunneling, non-adiabatic transitions, geometric phases,
etcetera, are ubiquitous in the theoretical modeling of the struc-
tural and dynamical properties of atomic and molecular systems.

In particular, time-dependent wave packet propagation schemes
have been extensively used in the study of numerous dynamical
problems in chemical physics [3,4]. Several numerical techniques
have been developed to tackle the quantum molecular dynamics.
Typically, those methods make use of standard bases or single vari-
able representation schemes [5–7], and they become computation-
ally very demanding for systems with many dimensions. Therefore,
they are unsuitable for systems with more than a few atoms. A
possible route to sidestep the exponential scaling of the computa-
tional cost of rigorous quantum mechanical calculations as the
system size increases, is the development of alternative method-
ologies in which a different set of equations is solved (rather than
solving the Schrödinger equation explicitly). To this purpose,
significant effort has been devoted to include quantum effects in
trajectory-based approaches (e.g., semiclassical initial value repre-
sentations) [8–10].

The introduction of the quantum trajectory method (QTM) by
Lopreore and Wyatt [11] lead to a renaissance of the interest in
trajectory-based formulations of quantum mechanics. Both the
time-independent [12–14] and the time-dependent [15–19] ver-
sions of the Schrödinger equation can be solved using quantum
trajectories. The method can be regarded as a numerical imple-
mentation of the Madelung’s or hydrodynamical formulation,
where the time-dependent Schrödinger equation is rewritten as a
set of Euler equations of a fluid (i.e., the equation of continuity
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and the conservation of momentum). Within this formulation, the
wave function is represented as a set of ‘‘fluid particles” whose
position and momenta evolve according to Newton-like equations
of motion (EOM). The information of the probability amplitude and
the phase of the wave function is carried along these trajectories,
and the state vector can be synthesized at any point in time from
these data. The non-local quantum effects enter in the dynamics
through the quantum potential, which depend on the curvature
of the wave function. It is responsible for every individual trajec-
tory to feel the effect of the others at each time step. The quantum
trajectory approach takes the advantage of the linear scaling, with
the dimensionality of the system, of trajectory-based formulations
(in contrast to the propagation of quantum wave packets via the
standard basis or the discrete variable representations). However,
the QTM may deviate from the linear scaling depending on the
algorithm used to approximate the quantum potential.

In spite of the apparent simplicity of the hydrodynamical formu-
lation, the numerical propagation of the quantum trajectories is
very challenging. In the last two decades, rather robust computa-
tional methods to solve the quantum trajectory EOM (which com-
bine numerical techniques like local least-square fit, regridding,
implicit averaging, adaptative and moving grids, among others)
have been developed, and those methods have been applied to a
variety of problems such as model scattering reactions [11,20–
25], non-adiabatic [26–28] and imaginary-time [29] dynamics.
Furthermore, other applications to the modeling of quantum–me-
chanical phenomena explored the use of approximate expressions
for the quantumpotential [30,31], or the introduction of an artificial
frictional force [32–34]. Such methodologies often lead to an over-
smoothing of the actual quantum potential, which improves the
stability of the integration of the EOM for the fluid particles at the
expense of describing quantum mechanical effects only
approximately.

In this contribution, we implement a numerical method for the
solution of the hydrodynamical EOM. The scheme is subsequently
applied to the description of spatially localized vibrational
dynamics, in particular to the evolution of a wave packet on a har-
monic and on a Morse potential. The numerical implementation is
based on the representation of the logarithm of the density and the
phase fields using Chebyshev polynomials. Chebyshev expansions
of a variety of functions of the Hamiltonian have been used exten-
sively in quantum dynamical calculations [35–39], and they are
extended this way to the quantum trajectory modeling of the
molecular dynamics. Chebyshev polynomials are chosen because
of their property of being the best interpolation polynomials in
the minimax sense. In the Chebyshev expansion, the truncation
error is smoothly spread out throughout the interpolated interval.
As a consequence, the Chebyshev approximation exhibits the
smallest maximum deviation from the interpolated function
(among all polynomials of the same degree). Furthermore, the
elimination of edge instabilities by using a variable radius of sup-
port in the moving least squares method, which becomes larger
in the vicinity of the edges [32], suggests the suitability of using
global interpolating functions to compute the derivatives in the
hydrodynamical formulation. Likewise, the recurrence relations
obeyed by Chebyshev polynomials allow the straightforward com-
putation of the derivatives of the hydrodynamical fields.

The present method could also be extended to the propagation
of molecular wavepackets on multiple potential energy surfaces. In
the case of several potential energy surfaces with negligible non-
adiabatic couplings, the same equations of motion are obtained
for the uncoupled fields evolving on each surface. In the presence
of significant non-adiabatic effects, the Chebyshev representation
of the tensor fields can be straightforwardly implemented in the
generalization of the quantum-trajectory equations of motion for
non-adiabatic dynamics [40].

The paper is organized as follows. First, the hydrodynamical for-
mulation of quantum mechanics is briefly introduced in Section 2,
and the numerical scheme proposed for the solution of the hydro-
dynamical equations is described. The results of the application of
the computational method to the time-evolution of a wave packet
on a quadratic and on a Morse potential are presented and dis-
cussed in Section 3. Finally, in Section 4, some remarks are given.

2. Theoretical methodology

2.1. Hydrodynamical formulation of quantum mechanics

In the hydrodynamical formulation of quantum mechanics, the
wave function is written in polar form Wð~r; tÞ ¼ eCð~r;tÞþiSð~r;tÞ=�h, where
Cð~r; tÞ and Sð~r; tÞ are real valued functions. Inserting this ansatz in
the time-dependent Schrödinger equation, and after separating
the real and imaginary parts, the hydrodynamical equations of
motion read:

@qð~r; tÞ
@t

þr � q
rS
m

� �
¼ 0; ð1Þ

� @S
@t

¼ 1
2m

ðrSÞ2 þ Vð~r; tÞ þ Q ½qð~r; tÞ�: ð2Þ

Since qð~r; tÞ ¼ e2Cð~r;tÞ represents the probability density in the
quantum fluid, Eq. (1) can be identified as the continuity equation,
withrS=m it representing the velocity field of the fluid particles of
mass m. On the other hand, Eq. (2) resembles the Hamilton–Jacobi
equation of classical mechanics, although it includes the additional
term:

Qð~r; tÞ ¼ � �h2

2m
ðrCÞ2 þ ðr2CÞ
h i

; ð3Þ

known as the de Broglie–Bohm or the quantum potential. Hence, in
the QTM, the density and the action fields are propagated along a
swarm of trajectories which evolve, according to the laws of classi-
cal mechanics, on the potential surface resulting from the addition
of the contributions V (due to the interaction forces) and Q. As it was
mentioned above, the quantum potential depends on the curvature
of the density profile, and it brings all the quantum mechanical
effects in the formulation. The divergence of the quantum potential
for vanishing densities, and the stiffness of the resulting EOM in
regions where rapid spatial variations of the probability density
are present (e.g., close to ripples in the density profile), constitute
the main factors hindering the numerical integration of the coupled
partial differential equations of quantum hydrodynamics. In the
present work, this problem is alleviated by implementing a
trajectory-reallocation scheme and conventional regularization
techniques, as will be described bellow.

Exploiting the mathematical equivalence of the various formu-
lations of classical mechanics, the EOM (1) and (2) can be recast (in
the Lagrangian reference frame) into the set of equations:

dS
dt

¼ 1
2m

ðrSÞ2 � Vð~r; tÞ � Q ½Cð~r; tÞ�; ð4Þ
d~r
dt

¼ rS
m

; ð5Þ
dC
dt

¼ �r2S
2m

: ð6Þ

The validity of expressions (4) and (5) immediately follows from
identifying the field S with the action of classical particles of mass
m, moving on the total external potential V þ Q , whereas Eq. (6)
enforces norm conservation. The change in the argument of the
quantum potential stress the fact that expression (3) allows to com-
pute Q directly from the function Cð~r; tÞ, without any explicit refer-
ence to the molecular density qð~r; tÞ or the wave functionWð~r; tÞ. On
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