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a b s t r a c t

The article considers the successful implementation of relativistic equation-of-motion coupled cluster
method for the electron attachment problem (EA-EOMCC) at the level of single- and double- excitation
approximation. The implemented relativistic EA-EOMCC method is employed to calculate ionization
potential values of alkali metal atoms (Li, Na, K, Rb, Cs, Fr) and the vertical electron affinity values of
LiX (X = H, F, Cl, Br), NaY (Y = H, F, Cl) starting from their closed-shell configuration. Both four-
component and exact two-component calculations are done for all the opted systems. Further, we have
shown the effect of spin–orbit interaction considering the atomic systems. The results of our atomic cal-
culations are compared with the values from the NIST database and the results are found to be very accu-
rate (<1%).

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A considerable growing interest is noticed in recent years in the
study of negative ions as negative ions have significance in many
areas of physics like in astrophysics, plasma physics and surface
physics [1–4]. The electron affinity (EA) is an important quantity
of these ions. The precise measurement of EA of atomic or molec-
ular systems is always a challenge as the resulting negative ion is
difficult to handle. Despite of the complexity in the measurement,
there have been significant advances in the experimental tech-
niques like laser photodetachment electron spectroscopy (LPES),
laser photodetachment threshold spectroscopy (LPTS), accelerator
mass spectroscopy (AMS) and photodetachment microscopy, et
cetera are capable of precise measurements of EA of an atomic sys-
tem [5–8]. However, the situation is inappreciative in achieving
such an extent of accuracy in the molecular systems due to the
possibility of structural change on attachment of an extra electron.
Therefore, it is an outstanding challenge to the computational
physicists to complement these atomic measurements as well as
for new predictions for the future purpose.

The computational prediction of EA is difficult due to the
absence of long-range Coulomb field outside of a neutral precursor.
Therefore, an extra electron is solely bound through correlation

with other electrons [9,10]. Moreover, most of the theoretical cal-
culations are based on the quantum chemical basis set methods.
Thus, the finite size of the basis and unbalanced treatment of elec-
tron correlation in the atomic or molecular system and in the
resulting ion are the sources of error [11,12]. The attachment and
detachment of an electron to a neutral species involves different
forces. The attached extra electron to the neutral atom polarizes
the electronic shell of the atom. As a result a dipolar electric field
is generated which binds the extra electron with the other elec-
trons. The charge distribution of the electron cloud, particularly
the electron–electron correlation effects decides the stability of
the negative ion. These interactions do not play much role in most
of the neutral atoms as well as in positive ions where direct elec-
trostatic force is the dominant factor for the stability of the neutral
atom or the positive ion. On the other hand, these effects dominate
in the negative ions. Therefore, the calculations of EA values of both
atomic and molecular systems are challenging and is a real test for
the performance of a many-body method. It is an established fact
that not only the electron correlation but also the effect of relativ-
ity play a definite role in accurate description of the eigenstates of
heavy atomic and molecular systems [13]. It is, therefore, in such a
case a highly correlated many-body method, capable of simultane-
ous treatment of relativity and electron correlation is required due
to the intricate coupling between these two effects [14–16].

The relativity has a greater role towards the core orbitals and
practically important for all the elements. The effects of relativity
are incorporated in the electronic structure calculations by the
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choice of the Hamiltonian. The consideration of Dirac–Coulomb–
Breit Hamiltonian without the quantum electrodynamics effects
(QED) is sufficient for most of the relativistic electronic structure
calculations using four-component wavefunction. However, in
actual practice the Dirac–Coulomb Hamiltonian is most commonly
used where two-body Coulomb interaction operator is added to

the Dirac Hamiltonian ðĤDÞ. Although, the form of the Coulomb
operator is same as in the non-relativistic theory, however, the
physical content is different as it takes care of the spin-same orbit
interaction. This type of truncation in the two-body interaction
does not effect much for most of the chemical purposes [17]. How-
ever, for very accurate studies of molecular spectra including fine
structure, the inclusion of spin-other-orbit interaction and spin–
spin interaction are required which can be done with the full inclu-
sion of the Breit part of the two-body interaction. The relativistic
calculations using four-component wavefunction are very expen-
sive from the computational perspective. A lot of effort has been
made to simplify the equations. The calculation of the small com-
ponent of the wavefunction is the most challenging part of the
computation. If a basis set is expressed in terms of contracted
Gaussian functions, then the number of required primitive Gaus-
sian functions for the small component is about twice the number
of the large component with the imposition of the kinetic balance
condition. On the other hand, the small component has a very
minor contribution in the calculated values; therefore, it makes
sense to look for an approximation. There are a number of Hamil-
tonians in between the scalar non-relativistic and four-component
relativistic ones. However, the inclusion of the spin–orbit interac-
tion requires at least a two-component description, though it will
essentially increase the computational cost due to the appearance
of complex algebra in place of real algebra. The electron correlation
methods in the no-pair approximation require the transformation
of the matrices from the atomic orbital (AO) basis to the molecular
orbital (MO) basis. The spin coordinates of the electrons can be
represented in terms of quaternion algebra in the four-index trans-
formation step which helps to go from complex four-component to
a two-component quaternion form. Therefore, the MO coefficients
become quaternion and can be represented in terms of real matri-
ces [18,19].

The generation of a two-component Hamiltonian from the par-
ent four-component Hamiltonian is the most preferred choice for
the purpose which includes the spin–orbit interaction with a lesser
cost as compared to the four-component Hamiltonian. The central
idea behind the generation of a two-component Hamiltonian is
that it should reproduce the positive-energy spectrum of the par-
ent Hamiltonian. Foldy and Wouthuysen proposed an idea to
decouple the large and small component by a unitary transforma-
tion of the four-component Hamiltonian. Another well known
approach is the elimination of the small component from the
wavefunction. However, these two approaches can be shown to
be equivalent [20]. The exact two-component approach (X2C) is
one such approach to reduce the computational scaling which uses
the elimination of the small component from the parent four-
component Hamiltonian. The detailed description of the X2C
approach including various other two-component methods can
be found in Ref. [13,21,22].

Over the years, the equation-of-motion coupled-cluster
(EOMCC) method gained popularity among correlation methods
for the treatment of electron correlation due to its simplicity and
elegance. The idea of EOMCC [23–31] is conceptually very simple
and it is operationally a two step process: (i) solution of coupled
cluster problem with the N electron closed-shell determinant as
reference and (ii) construction and diagonalization of the effective
Hamiltonian matrix for the Fock-space sector of interest in the con-
figuration space. It takes into account of both the dynamic and non

dynamic part of the electron correlation. The exponential structure
of the coupled-cluster operator takes care of the dynamic part of
the electron correlation and non dynamic part is included by
means of diagonalization of the effective Hamiltonian matrix in
the configurational space. The diagonalization of effective Hamilto-
nian, by and large is associated with the multi-reference theories,
whereas EOMCC works within a single reference description to
tackle the complex multi-configurational wavefunction. Further,
the relaxation effect, which has an important role in proper
description of the eigenstates is also taken care. The multiple roots
can be addressed in a single calculation and each of the states are
treated with equal weightage. The EOMCC method behaves prop-
erly at the non-interacting limit but not rigorously extensive (only
for the core–core and core–valence interactions) due to the linear
structure of the EOM operator [32]. The EOMCC is in close kinship
with the coupled cluster linear response theory (CCLRT) [33,34]
and symmetry adapted cluster expansion configuration interaction
(SAC-CI) method [35,36]. It is worth to note that the transition
energy calculated using CCLRT is identical with the EOMCCmethod
for the one valence problem but the transition moments is identi-
cal only when it is represented as a energy derivative in EOMCC
framework. Chaudhuri et al. [37,38] applied relativistic CCLRT for
the ionization problem of atomic systems with spherical imple-
mentation. Beside these two methods, effective Hamiltonian vari-
ant of Fock-space multi-reference (FSMRCC) theory [39–44]
always comes in the discussion on EOMCC since these two meth-
ods produce identical results for the one valence problem. The
amplitudes of all the lower sector including the sector of interest
are involved in the FSMRCC theory. On the other hand, EOMCC
deals with the amplitudes of the (0, 0) sector and the sector of
interest. Therefore, both the approach eventually produces the
same result for the one electron attachment or detachment prob-
lem. The EOMCC is free from the problem of intruder due to its
CI (configuration interaction method) like structure, which is asso-
ciated with the effective Hamiltonian variant of the FSMRCC the-
ory. There are ways in the FSMRCC framework to handle the
problem of intruder such as the eigenvalue independent partition-
ing technique of Mukherjee (EIP-FSMRCC) [32,45] and the
intermediate Hamiltonian variant of the FSMRCC (IH-FSMRCC)
theory [46–48].

Recently, Blundell implemented relativistic EOMCC method for
the electron affinity problem and applied to calculate fine-
structure splittings in high-lying states of rubidium atom [49].
The implemented version of Blundell is applicable only for the pur-
pose of atomic calculations as they have used the spherical imple-
mentation which allows the separation of radial and angular parts.
Therefore, the evaluation of radial integrals is only required and
the angular part will add up to it as a multiplier. The radial inte-
grals can be evaluated numerically. Such a separation is not possi-
ble in molecular systems due to the absence of spherical
symmetry. The required one-body and two-body matrix elements
are evaluated in the Cartesian coordinate system. The Cartesian
coordinate system does not allow one to exploit the spherical sym-
metry to separate the matrix elements into radial and angular
parts. Furthermore, the anti-symmetrized two-body matrix ele-
ments are used in this coordinate system calculations, which is
not possible in the spherical implementations as angular factor will
be different for the direct and exchange part of the two-body
matrix element. Thus, our implemented version is a general one,
applicable to both atoms as well as molecules starting from their
closed-shell reference state configuration. It should be noted that
the spherical implementation is much more complex than that of
the molecular calculations, but it is favorable from the computa-
tional point of view as it requires only the solution of radial inte-
grals. Therefore, atomic calculations are computationally easy,
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