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a b s t r a c t

We have calculated the vertical excitation energy between the singlet ground state (11Ag) and the lowest-
lying singlet excited state (11Eu) of Zn-porphyrin employing the fixed-node diffusion Monte Carlo tech-
nique. The determinantal parts of trial wave functions were constructed using results from Configuration
Interaction and time-dependent Density Functional Theory.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Porphyrins and their derivatives are very important molecules
as they hold key roles in many biochemical processes such as pho-
tosynthesis, oxygen transport and photo-induced electron-transfer
[1–3]. In addition, they are constituent units of systems that have
raised considerable interest in a variety of research areas, for
instance, in photodynamic therapy (in medicine), molecular elec-
tronics, supramolecular chemistry, molecular computers [4], and
light-harvesting [5].

Due to the importance of porphyrins, it is crucial to understand
and accurately describe the ground and excited states in these
molecules. For a reliable treatment of metal-porphyrins, one needs
to employ methods that capture the electron correlation with high
accuracy. This is especially true for transition-metal porphyrins
due to the strong correlations and exchange effects present as well
as for proper description of p—d bondings [6].

Porphyrins and their derivatives have been intensively studied
by Density Functional Theory (DFT) methods. DFT methods, by
the virtue of including electron correlations by construction, are
computationally very appealing. Unfortunately, DFT is biased by
empirical choices and by the approximate character of the avail-
able functionals. In addition to DFT methods, porphyrins have been

investigated by wave function-based correlated methods such as
Coupled Cluster (CC) and its variants. These high order quantum
chemical techniques usually provide very accurate results, how-
ever, they do not scale very well with the system size. Hence, it
is very difficult to extend the study to larger systems of porphyrins.
On the other hand, quantum Monte Carlo (QMC), a sophisticated
quantum many-body method, offers high accuracy along with a
better scaling than CC does [7]. As such, it is a promising method
of choice for studying these types of systems.

In our work, we investigate ground and excited states of a por-
phyrin using the QMC methods. A monomer metal-porphyrin has
D4h symmetry and without side chains its molecular formula is
C20H12N4M where M is the metal atom (see Fig. 1). According to
Gouterman’s porphyrin model the visible absorption bands (Q
band) are associated with p—p transitions with Eu symmetry that
correspond to two equivalent transitions in the molecular plane
[1]. For our study we have chosen the Zinc-porphyrin (ZnP), a
well-known example of p-conjugated systems with an important
role in photo-chemical processes [8].

In our study we aim to calculate the vertical excitation energy
in the Q band corresponding to the excitation from the singlet
ground state ð11AgÞ to the lowest-lying singlet excited state
ð11EuÞ of ZnP by means of the diffusion Monte Carlo method
(DMC), a variant of QMC. DMC is essentially a stochastic solution
of the many-body Schrödinger equation in which the state with
the lowest energy of a given symmetry is projected out of a trial
wave function. Although formally exact, it suffers from the
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well-known fermion sign problem that we circumvent by the
fixed-node approximation (FN-DMC). We construct the trial wave
functions using orbitals Hartree–Fock (HF), post-HF and DFT tech-
niques. More specifically, the trial wave functions of the excited
state were obtained by Configuration Interaction Singles (CIS),
DFT and time-dependent DFT (TDDFT) methods (see, for example,
studies Refs. [9,10]).

The rest of our paper will be as follows: First, the fixed-node
DMC method is briefly introduced. Second, we explain the compu-
tational details. Third, the results and discussion are presented.
Finally, the paper ends with concluding remarks.

2. Method

This part presents a brief overview of the fixed-node DMC
method. A more detailed discussion of this formalism can be found
in many reviews, for instance, Refs. [11,12,7].

2.1. Fixed-node diffusion Monte Carlo

DMC is a projection approach: the state with the lowest energy
is projected out of a trial wave function. Let wT be a trial wave
function defined in a space spanned by the eigenstates of the
Hamiltonian of the system as follows:

wT ¼
X
i¼0

aiUi; ð1Þ

where fUig is the set of eigenstates with eigenvalues fEig, i.e.
HUi ¼ EiUi. Assuming that a0 – 0, the state with the lowest energy
ðU0Þ can be singled out by applying the projection operator, e�ðH�ET Þt

to the trial wave function as follows

U0 ¼ lim
t!þ1

e�ðH�ET ÞtwT : ð2Þ

provided that ET becomes E0. We note that the parameter t (imagi-
nary time) in the projection operator is a positive real number.

For higher efficiency, the importance sampling by wT can be
introduced so that the resulting product, f ðR; tÞ ¼ U0ðR; tÞwTðRÞ,
obeys the following integral equation:

f ðR; t þ sÞ ¼
Z

dR0 eGðR0 ! R; sÞ f ðR0; tÞ; ð3Þ

where eGðR0 ! R; sÞ ¼ hR j e�sðH�ET Þ j R0iwTðRÞwTðR
0Þ�1 is the Green’s

function with the propagation time step s, and R and R0 denote

electronic system configurations. In the long time limit, f ðR; tÞ con-
verges in the following form: limt!1f ðR; tÞ ¼ U0ðRÞwTðRÞ.

The simulation formulated above begins with sampling of
j wTðRÞj

2 by an ensemble of configurations (or walkers) which sub-
sequently evolve in accordance with the Green’s functioneGðR0 ! R; sÞ into the product of the ground state U0ðRÞ and the
trial wave function wTðRÞ. An analysis of the Green’s function
shows that the evolution of the configurations can be represented
by stochastic realization of processes such as diffusion, branching
and drift. Once the simulation reaches equilibrium, calculations
of desired expectations are carried out.

Unfortunately, application of this procedure to an electronic
system leads to the well-known fermion sign problem. It stems
from the fact that the function f ðR; tÞ ¼ U0ðRÞwTðRÞ is not non-neg-
ative for the entire configuration space due to the antisymmetry of
fermionic wave functions. One possible way how to circumvent the
sign problem is to force the ground state (U0) to adopt the nodes
(zero locus) of the trial wave function (wT ). In this way, the product
of the ground state (U0) and the trial wave function (wT ) will be
non-negative in the entire configuration space. This approach is
known as the fixed-node approximation, ameliorates the ineffi-
ciency of inherent to the fermion signs at the cost of introducing
the fixed-node bias. The fixed-node bias will vanish as the nodes
of the trial wave function get closer to the exact nodes. Therefore,
the quality of the nodes of a trial wave function is crucial in FN-
DMC.

Since the state projected out in the fixed-node DMC is the state
with the lowest energy of a given nodal symmetry; a desired
excited state, ideally speaking, can be projected out by the fixed-
node DMC if the nodal surface imposed by the trial wave function
is the same as the nodal surface of the exact state [7]. The nodal
constraint enforced by the fixed-node approximation enables
DMC to calculate also excited states.

2.2. Trial wave functions

The trial wave functions used in our work are of the Slater–
Jastrow type written as follows:

wTðRÞ ¼
X

i

diD
a
i ðRÞD

b
i ðRÞe

JðRÞ; ð4Þ

where DaðbÞ
i ðRÞ is a Slater determinant of spin aðbÞ electrons, di is the

coefficient and JðRÞ is the Jastrow function. The nodes of a trial wave
function are clearly determined by the antisymmetric Slater compo-
nent. The Jastrow function containing one-body and two-body
explicit correlation terms can be given by

JðRÞ ¼
X
i>j

uðrijÞ þ
X

I

X
i

vIðriIÞ; ð5Þ

where i(j) and I are electron and nuclei indices, respectively, and
riI; rij are the corresponding distances. The u and v terms describe
electron–electron and electron–nucleus correlations, respectively.

Although the accuracy of the nodal approximation in the fixed-
node DMC relies on the Slater component, the Jastrow factor is still
important for the efficiency of the simulation since it helps to
reduce the fluctuations and hence the cost of the computation.

2.3. Effective core potentials

QMC allows for use of effective core potentials (ECP), a well-
known technique that is used to eliminate the core electrons.
ECP in QMC calculations offers significant advantages. First, the
computational cost, growing with Z5:5—6:5

eff where Zeff is the effective
nuclear charge, can be reduced [7]. This is mainly due to decreasing
the energy fluctuations close to the nuclei but also due to the
smoother electron density of the valence-only setting. Second,

Fig. 1. (a) Zn-porphyrin (ZnP) C20H12N4Zn geometry. (b) The bond lengths of ZnP in
the singlet ground state. The numbers in parenthesis next to the bonds refer the
order of bonds given in (a).
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