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a b s t r a c t

We present an implementation of the Polarizable Continuum Model (PCM) in combination with the
Second-Order Polarization Propagator Approximation (SOPPA) electronic structure method. In analogy
with the most common way of designing ground state calculations based on a Second-Order Møller–Ples-
set (MP2) wave function coupled to PCM, we introduce dynamical PCM solvent effects only in the Ran-
dom Phase Approximation (RPA) part of the SOPPA response equations while the static solvent
contribution is kept in both the RPA terms as well as in the higher order correlation matrix components
of the SOPPA response equations. By dynamic terms, we refer to contributions that describe a change in
environmental polarization which, in turn, reflects a change in the core molecular charge distribution
upon an electronic excitation. This new combination of methods is termed PCM–SOPPA/RPA. We apply
this newly defined method to the challenging cases of solvent effects on the lowest and intense electronic
transitions in o-, m- and p-nitroaniline and o-, m- and p-nitrophenol and compare the performance of
PCM–SOPPA/RPA with more conventional approaches. Compared to calculations based on time-depen-
dent density functional theory employing a range-separated exchange–correlation functional, we find
the PCM–SOPPA/RPA approach to be slightly superior with respect to systematicity. On the other hand,
the absolute values of the predicted excitation energies are largely underestimated. This – however –
is a well-know feature of the SOPPA model itself and is not connected to its combination with the PCM.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Development of models for calculations of medium effects on
confined molecules is a long-standing challenge in computational
quantum chemistry. It is well-known that a medium, e.g., a solvent,
can have a strong influence on the electronic structure of a
molecule, e.g., a solute, and as a consequence the environment
may significantly perturb both structure, reactivity, and molecular
properties of the confined molecule, thereby leading to large
changes in, e.g., its spectroscopic properties. Since various spectro-
scopic properties can be considered as fingerprints of a molecule, it
is of great importance to be able to both predict and rationalize the
effects a medium exerts on a specific molecule. The difficulties one
encounters when introducing an environment in quantum

chemical calculations are manifold. First of all, the size of the sys-
tem increases significantly, for instance in the case of a solute sur-
rounded by a solvent. In case of the solvent being water, the most
common solvent of them all, its fairly large dipole moment as well
as its relatively high polarizability imply that in order to consider
converged electrostatic solute–solvent interactions, a water shell
radius of approximately 12 Å is needed [1]. This amounts to around
240 water molecules, thus increasing the size of the system – as
compared to the isolated solute molecule – by around 720 atoms.
Thus, even though the interest is usually not on the details of the
electronic structure of the solvent, almost all the computational
time will inevitably be spent on evaluating these. Secondly, a
solvent is by nature dynamical in the sense that conformational
sampling gains importance even if the solute molecule itself is
fairly rigid. As compared to the case of the isolated solute molecule,
there will be a need for repeating these expensive quantum chem-
ical calculations a sufficient number of times in order to sample
different solvent configurations and obtain averaged results for,
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e.g., spectroscopic parameters. From this example, it is clear that
effective ways of introducing the effect of the solvent into quantum
chemical calculations, thereby avoiding explicit consideration of
the electronic structure of the solvent molecules, are highly
needed. Indeed, brute-force methods will quickly become both
too expensive and practically unnecessary.

A popular approach for circumventing some of the problems de-
scribed above is to rely on hybrid methods, i.e., methods in which
the confined molecule is treated by means of quantum mechanics
and the environment is given a classical description using molecu-
lar mechanics [2–4]. In recent years, we have developed such an
approach and applied it in the prediction and rationalization of
various spectroscopical parameters. This method is termed Polariz-
able Embedding (PE) [5,6]. In contrast to most other hybrid meth-
ods, the PE method accounts explicitly for the environment
polarization that reflects the electronic degrees of freedom which
are important when considering, e.g., the prediction of electronic
excitation energies. This is so, as a change in the solute electronic
structure upon electronic excitation may potentially lead to large
changes in the environment polarization. However, in the class of
hybrid methods where the solvent is treated explicitly, sufficient
samplings over solute–solvent configurations are still needed,
meaning that molecular simulations need to be invoked [7]. Thus,
even though the cost of performing these quantum chemical
calculations has been reduced significantly, as compared to a full
quantum chemical calculation on the entire system, many of these
quantum chemical calculations still need to be performed and
indeed it would be desirable to reduce this number to one, i.e.,
mimicking what is needed in the case of the isolated molecule. A
route to achieve this goal is to consider the environment implicitly,
i.e., by describing this as a dielectric continuum [8]. By defining the
solvent implicitly, both the explicit cost of performing a solute–
solvent calculation as well as the number of such calculations
become significantly reduced. For example, the Generalized Born
solvation model has been successfully implemented into molecular
dynamics (and Monte Carlo) codes resulting in tremendous savings
in computational time [9].

In this paper, we present a new combination of methods with
the aim of performing calculations of spectroscopic parameters,
here mainly in the context of solute molecules subjected to a sol-
vent. The solvent model explored here is the Polarizable Dielectric
Continuum Model (PCM) [8] and in the following sections we will
investigate the coupling of this model to the Second-Order Polari-
zation Propagator Approximation (SOPPA) [10–14]. The aim is to
develop a fairly simple, yet reasonably accurate way of introducing
solvent effects into an electronic correlated description of the sol-
ute. As discussed below, SOPPA parallels the well-known second-
order Møller–Plesset (MP2) method, but whereas MP2 is designed
for molecular electronic ground states, SOPPA is designed for cal-
culations of excited states and general response properties.

2. Theory

In the present section, we give a brief description of the basics
of the PCM. Next, we summarize SOPPA and end by describing
how these two approaches can be combined in an effective way.

2.1. PCM

The Polarizable Continuum Model [8] (PCM) represents one of
the most powerful and effective approaches developed for intro-
ducing medium effects in an electronic structure calculation. Here,
we will only be interested in describing effects from simple solvents
although the PCM model may also be applied to more complex
environments. In addition, we will only consider environmental

effects of electrostatic nature. In the PCM, the solvent is represented
as a homogeneous dielectric continuum that becomes polarized by
the solute, which is placed within a molecular shaped cavity
embedded by said dielectric continuum. The cavity is defined by
assigning spheres to each atom (or a group of atoms) forming the
solute and considering the final envelope of these interlocking
spheres. The radii used to define these spheres enter into the model
as empirical parameters. Once the cavity has been defined, the pro-
cedure is to solve the Poisson equation, i.e., to derive the (electric)
potential which characterizes the electrostatics. The formalism
used to solve the Poisson equation is here the Integral Equation For-
malism [15] (IEF) version of PCM. In this model, the potential has
two contributions: one from a potential produced by the solute
charge distribution and another from a potential that is due to an
apparent surface charge (ASC) distribution, which arises due to
polarization of the dielectric medium by the quantum mechanically
treated system. The latter charge distribution gives rise to what is
termed the reaction-field, i.e., the potential used to perturb the
electronic structure of the solute. In order to solve for the ASC dis-
tribution, a partitioning of the cavity surface into N finite elements,
known as tesserae, is invoked. Each tessera contains a point charge
(qk), and the potential due to the polarization of the dielectric med-
ium is then discretized according to

/ðrÞ ¼
XN

k¼1

qk

jr � rkj
ð1Þ

where rk is the position of tessera k and qk the corresponding
charge. These charges – used to define the ASC distribution – may
be obtained as the solution to the linear set of equations

Bq ¼ �V ð2Þ

where V is a vector of dimension N, which collects the solute elec-
tric potential at each tessera, q is similarly a vector of dimension N
holding the induced charges, and the matrix B�1 is referred to as the
solvent response matrix, i.e., it may be considered as a matrix
representation of a classical response function that connects the
perturbation (the solute electric potential) with the response (the
induced charges). Once the ASC distribution has been obtained,
the resulting point charges may be included into the solute
Hamiltonian, in return giving rise to an effective solute Hamiltonian

bHeff jW0i ¼ bH0 þ /̂
� �

jW0i ð3Þ

where jW0i represents the ground state wave function, bH0 is the
Hamiltonian for the isolated (solute) molecule, and /̂ represents
an operator corresponding to the electrostatic potential. We note
that since the induced charges depend on the solute charge distri-
bution, so does the potential created by these charges and, in effect,
the perturbation. Thus, we are left with a density-dependent
perturbation, implying that the electronic structure and solvent
polarization problems need to be determined using a double self-
consistent-field approach.

Considering now calculations of excited states, two different ap-
proaches can generally be followed: the state specific or response
based methods [8]. Here, we will exclusively be concerned with
the linear response formulation. As shown in Refs. [16,17], contri-
butions to the linear response function due to the polarizable con-
tinuum may be classified as either static or dynamic. The static
contributions describe the excitation process within the solute in
a frozen environment and are included in the response functions
through the use of orbital energies and coefficients that contain
the effect of the medium. Relaxation – or differential polarization
between the ground and excited states – is introduced through
explicit terms in the linear response functions, see e.g. Refs.
[16,17] for a detailed derivation. These explicit contributions

2 J.J. Eriksen et al. / Computational and Theoretical Chemistry xxx (2014) xxx–xxx

Please cite this article in press as: J.J. Eriksen et al., Comput. Theoret. Chem. (2014), http://dx.doi.org/10.1016/j.comptc.2014.02.034

http://dx.doi.org/10.1016/j.comptc.2014.02.034


Download English Version:

https://daneshyari.com/en/article/5393639

Download Persian Version:

https://daneshyari.com/article/5393639

Daneshyari.com

https://daneshyari.com/en/article/5393639
https://daneshyari.com/article/5393639
https://daneshyari.com

