Accepted Manuscript

Cation/anion dependence of metal ammine borohydrides/chlorides studied by *ab initio* calculations

A. Yamane, F. Shimojo, T. Ichikawa, Y. Kojima


PII: S2210-271X(14)00211-4

DOI: http://dx.doi.org/10.1016/j.comptc.2014.04.033

Reference: COMPTC 1493

To appear in: Computational & Theoretical Chemistry

Received Date: 9 January 2014 Revised Date: 24 April 2014 Accepted Date: 29 April 2014

Please cite this article as: A. Yamane, F. Shimojo, T. Ichikawa, Y. Kojima, Cation/anion dependence of metal ammine borohydrides/chlorides studied by *ab initio* calculations, *Computational & Theoretical Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.comptc.2014.04.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cation/anion dependence of metal ammine borohydrides/chlorides studied by *ab initio* calculations

A. Yamane^{a,b}, F. Shimojo^c, T. Ichikawa^{d,a}, Y. Kojima^{d,a}

^aInstitute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima, 739-8530. Japan

^bGeikisha, Inc., 4-5-44, Nishihara, Asaminami-ku, Hiroshima, 731-0113, Japan
^cGraduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan

^d Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan

Abstract

Ammonia (NH₃), which contains about 18 mass% of hydrogen, is regarded not only as one of the most promising hydrogen storage materials but also as an efficient carbon-free energy carrier which can be directly used by e.g. high-temperature solid oxide fuel cells. For the development of the NH₃-based sustainable society, it is important to improve NH₃ storage technologies. In this paper, we have studied the microscopic properties of NH₃ absorption in metal borohydrides and metal chlorides by ab~initio calculations. We have revealed that there is a systematic cation dependence in the NH₃ absorption properties of such materials, and the properties of NH₃ absorption are mainly governed by NH₃-cation interactions and NH₃-anion repulsions.

Keywords: ammonia storage, hydrogen storage, ab initio, microscopic property

1. Introduction

The development of a carbon-free sustainable society is one of the most important tasks for the human beings, and the society in which energies are generated from renewable energy sources and are stored and transferred in hydrogen (H_2) is regarded the most promising answer for this task.

Ammonia (NH₃) can be regarded as one of the most promising hydrogen storage materials since it contains about 18 mass% of hydrogen atoms and can be liquefied at about 1 MPa. We can obtain H₂ molecules from NH₃ by thermal decompositions or chemical reactions. For the latter, H₂ molecules are easily obtained from MH-NH₃ system (MH: alkali metal hydride) [1, 2], and the hydrogen desorption property of this system depends on the ionicity of alkali

Email address: reuni@hiroshima-u.ac.jp (A. Yamane)

Preprint submitted to Elsevier

May 5, 2014

Download English Version:

https://daneshyari.com/en/article/5393720

Download Persian Version:

https://daneshyari.com/article/5393720

<u>Daneshyari.com</u>