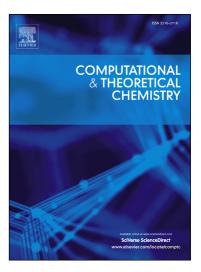
Accepted Manuscript

Photochemical dynamics simulations for trans-cis photoisomerizations of azobenzene and bridged azobenzene

Ai-Hua Gao, Bin Li, Pei-Yu Zhang, Jianyong Liu


PII: S2210-271X(14)00004-8

DOI: http://dx.doi.org/10.1016/j.comptc.2013.12.029

Reference: COMPTC 1352

To appear in: Computational & Theoretical Chemistry

Received Date: 4 December 2013 Revised Date: 31 December 2013 Accepted Date: 31 December 2013

Please cite this article as: A-H. Gao, B. Li, P-Y. Zhang, J. Liu, Photochemical dynamics simulations for trans-cis photoisomerizations of azobenzene and bridged azobenzene, *Computational & Theoretical Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.comptc.2013.12.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Photochemical	dynamics	simulations	for trans-cis	photoison	nerizations	of

azobenzene and bridged azobenzene

3 Ai-Hua Gao, Bin Li, Pei-Yu Zhang, Jianyong Liu*

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences, Dalian 116023, China

5 6

4

- 7 Corresponding author:
- 8 *E-mail address: <u>beam@dicp.ac.cn</u>

9 **Abstract**

Surface hopping dynamics simulations based on the Zhu-Nakamura 10 theory were performed to investigate the trans-cis photoisomerization 11 mechanisms of azobenzene and bridged azobenzene excited to S₁ state. In 12 both the two geometry optimization, for compounds. 13 minimum-energy conical intersections between the ground state and the 14 lowest excited state are located. Two conical intersections are confirmed 15 to be decay funnels in the trans-cis photoisomerization processes in 16 azobenzene but only one plays important parts in the photoisomerization 17 of bridged azobenzene. Due to the smaller slope of potential energy 18 surface in the S_1 state, the lifetime of the S_1 state of azobenzene in our 19 work is much longer than that of bridged azobenzene. We show that the 20 torsion around the central N=N bond is the preferred reaction mechanism 21 in the isomerization of two molecules. Rotation around the central N=N 22 bond and twisting of phenyl rings around their N-C bonds allows the 23 molecule to move to a minimum-energy conical intersection, after which 24 surface hopping from S_1 to S_0 occurs. In the ground state, further rotation 25

Download English Version:

https://daneshyari.com/en/article/5393782

Download Persian Version:

https://daneshyari.com/article/5393782

<u>Daneshyari.com</u>