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Computational screening is the cornerstone of in silico material discovery, as computational evaluation is
faster and much less expensive than experimental trial-and-error testing. Calculations were made of the
highest-occupied and lowest-unoccupied molecular orbitals and binding energy with a Li*(ethylene car-
bonate) ion for 33 organic molecules, which are electrolyte additives for solid electrolyte interphase (SEI)
formation in lithium-ion batteries. This work supports the utility of Li* binding affinity values calculated
from a more simple Li*(additive) model. We suggest five promising SEI-forming additives with high ano-
dic stability comparable to fluoropropane sultone on the basis of our calculations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For lithium-ion batteries (LIBs), the electrolyte typically con-
sists of one or more lithium salts dissolved in an aprotic solvent,
often with at least one additive. Additives are included in electro-
lyte formulation to perform specific functions. A common function
is to enhance electrode stability by facilitating the formation of the
solid electrolyte interphase (SEI) layer. In LIBs using a graphite an-
ode, various simple organic molecules act as anode SEI additives.
The additives are selected to control the chemistry at the anode/
electrolyte interface. The SEI plays a vital role in the battery
reactions of LIBs and is also a key material for cycle life, lifetime,
power capability, and even safety. The initial step toward anode
SEI formation is electron transfer to the SEI-forming species,
resulting in a single- or multi-step decomposition reaction that
produces the passivating SEI layer at the graphite-electrolyte
interface [1-3].

A higher reduction potential than the solvent would therefore
be an important requirement for electrolyte additives selected to
protect the electrolyte solvent from decomposition. The lowest-
unoccupied molecular orbital (LUMO) energy or electron affinity
values have been used as a key screening factor for the develop-
ment of SEI-forming additives in LIBs [4]. Computational screening
is the cornerstone of in silico material discovery, as it allows
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researchers to identify promising structures efficiently. Computa-
tional evaluation is faster and much less expensive than experi-
mental trial-and-error testing when effective screening factors
are known [5]. Despite the importance of computational screening,
there have been few exploratory studies exist on screening for
electrolytes [4,6].

Han et al. [6] showed that a low binding energy with a Li* ion
(BE(Li*)) value is a predominant characteristic of SEI-forming addi-
tives; the authors calculated the LUMO, 7, u, and BE(Li*) for 32 SEI-
forming additives and proposed that the LUMO and BE(Li*) values
can be critical indicators of suitable SEI formation. Leggesse and
Jiang [7,8] supported low Li* binding affinities of SEI-forming addi-
tives from the density function theory (DFT) calculations of their
additives.

Recently, Han and his coworkers [9] demonstrated that fluo-
rine-substituted propane sulfone (FPS) outperforms vinylene car-
bonate (VC), the most widely used SEI-forming additive, because
of its higher anodic stability and its excellent SEI-forming ability.
Interestingly, the Li* binding affinity of FPS is smaller than those
of even the widely used additives, VC and propane sultone (PS).

In this work, we examine the Li* binding affinity of 33 SEI-form-
ing additives [9,13-43], employing a more realistic Li*(ethylene
carbonate)(additive) model than the Li*(additive) model employed
in our previous work [6]. We aim to show that Li*-ion binding
affinity values are critical indicators of suitable SEI formation via
calculations employing the more realistic model. We suggest
promising SEI-forming additives with high anodic stability compa-
rable to FPS on the basis of our highest-occupied molecular orbital
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(HOMO) energies. More elaborate models would be possible for
estimating a very complex property, SEI formation ability. Actually,
Xing and Borodin [10] reported that at least two EC molecules
should be considered to accurately predict oxidation potential
and reaction products of EC oxidative decomposition. Yoshitake
[11,12] indicated that HOMO trends often did not agree with the
experimentally measured oxidation potentials of electrolytes. Nev-
ertheless, the use of molecular orbital energy and Li* binding affin-
ity is still a useful choice because simple models are necessary for
practical and cost-effective screening. The molecular structures of
33 SEl-forming additives are included in Fig. S1 of the Supporting
Information.

2. Computational details

Kohn-Sham DFT has become a popular method for calculating
molecular properties for a vast array of organic molecules used in
LIBs [44-48]. The ground-state structures of the molecules have
been fully optimized within C1 symmetry by means of DFT methods.
The Kohn-Sham equation was calculated with the B3PW91 func-
tional and 6-311G(d,p) basis sets of triple-{ quality. The functional
includes a three-parameter adiabatic connection exchange term
[49]: a linear combination of the exact Hartree-Fock exchange, Sla-
ter exchange [50], and B88 gradient-corrected exchange [51].

This study employs the conductor-variant polarized continuum
model (CPCM) [52], which places the solute in a molecular-shaped
cavity imbedded in a continuum dielectric medium. In the CPCM,
the variation of the free energy when going from vacuum to
solution is composed of the work required to build a cavity in

Table 1

Highest occupied molecular orbital (HOMO), Lowest unoccupied molecular orbital (LUMO),

are included for comparison.

Table 2
Calculated BE(Li*)so values (in eV) using different dielectric constants for the
Li*(EC)(additive) systems.

& BE(Lr)so]

16 33 EC
10.0 0.17 0.08 0.43
20.0 0.09 0.00 0.36
319 0.06 —-0.02 0.33
40.0 0.05 -0.03 0.32
50.0 0.04 —0.04 0.31

Propane sultone (16), Fluoro propane sultone (33), and ethylene carbonate (EC).

the solvent (cavitation energy) together with the electrostatic (sol-
ute-solvent interaction and solute polarization) and non-electro-
static (dispersion and repulsion energy) work. A dielectric
constant of 31.9 was adopted as a weighted average value between
the dielectric constants of ethylene carbonate (EC: 89.2) and ethyl
methyl carbonate (EMC: 2.9), because an EC:EMC = 1:2 solution is
widely used as the solvent in LIBs [1,53]. Our group has previously
demonstrated that the CPCM is very effective for evaluating vari-
ous electrochemical properties in the battery electrolyte [6,9,54-
57]. All of the DFT and CPCM calculations were performed with
the program package Gaussian 03 [58].

3. Results and discussion

The HOMO, LUMO, BE(Li*)gas, and BE(Li*)s values of 33 addi-
tives are listed in Table 1, along with the EC and propylene carbon-

and Li* binding energy (BE(Li*)) of 33 SEI-forming additives. The results for EC and PC

Material HOMO (eV) LUMO (eV) BE(Li*) (eV) Ref.
Gas Solvent
(1) Vinylene carbonate -7.19 -0.26 1.55 0.27 [13-15]
(2) Vinylethylene carbonate —8.04 -0.84 1.74 0.32 [16,17]
(3) Phenylethylene carbonate —7.42 —0.96 1.76 0.32 [18]
(4) Fluoroethylene carbonate -8.72 0.37 1.53 0.27 [19-21]
(5) Trifluoromethyl propylene carbonate -8.76 0.36 1.53 0.27 [22,23]
(6) Succinic anhydride -8.01 -1.03 1.42 0.23 [24]
(7) Maleic anhydride -8.38 -341 1.31 0.19 [25]
(8) Phthalic anhydride -8.17 —2.86 1.49 0.19 [26]
(9) 1,3-Benzodioxol-2-one —7.08 -1.09 1.54 0.22 [27]
(10) Methyl benzoate -7.33 -1.48 1.61 0.25 [27]
(11) a-Bromo-y-butyrolactone -7.76 -1.10 1.65 0.18 [28]
(12) Methyl chloroformate —8.53 -0.40 1.27 0.17 [28]
(13) Vinyl acetate -7.09 -0.53 1.46 0.25 [29]
(14) Allyl methyl carbonate -7.64 -0.24 1.51 0.24 [29]
(15) Ethylene sulfite -8.00 -0.77 1.55 0.27 [30]
(16) Propane sultone -8.29 0.37 1.53 0.06 [31]
(17) Propene sultone -8.12 -1.55 1.53 0.06 [32]
(18) Butane sultone -8.57 0.71 1.54 0.02 [33]
(19) Propylene sulfite —7.96 -0.71 1.60 0.28 [34]
(20) Butylene sulfite -7.81 -0.61 1.65 0.28 [35]
(21) Dimethyl sulfite -7.63 -0.32 1.53 0.24 [36,37]
(22) Diethyl sulfite -7.39 -0.27 1.79 0.32 [36,37]
(23) Glycolide -8.15 -0.83 1.38 0.26 [38]
(24) Dimethyl glycolide -7.91 -0.75 1.46 0.25 [39]
(25) Tetramethyl glycolide -7.67 -0.58 1.55 0.26 [40]
(26) N-acetyl caprolactam -7.21 —0.81 1.57 0.22 [41]
(27) Succimide -7.35 —-0.80 1.51 0.29 [27]
(28) 2-Vinylpyridine —6.70 -1.47 1.56 0.19 [27]
(29) 2-Cyanofuran -7.19 -1.57 1.53 0.23 [42]
(30) Methyl cinnamate —6.69 -2.03 1.70 0.27 [27]
(31) Vinyl ethylene sulfite -7.83 -0.96 1.59 0.27 [43]
(32) Chloroethylene carbonate -8.79 -0.43 1.51 0.25 [27]
(33) Fluoro propane sultone -8.75 0.29 1.37 —0.02 [9]
Ethylene carbonate (EC) -8.25 0.81 1.70 0.33
Propylene carbonate (PC) -8.16 0.83 1.68 0.33
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