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a b s t r a c t

A brief review is made of developments in the theory of reduced density matrix estimation of fermion
system properties, to which John Coleman contributed enormously. Emphasis is placed upon those con-
straints that are peculiar to the system in question, as well as to those of ‘‘universal’’ validity. The former
are typically obtained by following the consequences of the insertion or deletion of one of the particles of
the system, and, for example, the PY equation of classical fluid theory is identified as the ‘‘saturation’’ of a
valid inequality. An analogous process for fermion systems is introduced but not carried out very far.

� 2012 Elsevier B.V. All rights reserved.

John Coleman was a master of tight mathematical analysis. I
first became aware of him in the early 1960’s. A bunch of us had
chatted extensively (at various Washington, DC meetings of the
American Physical Society) about how to take advantage of Mayer’s
insightful—but deeply flawed—pair reduction of the N-fermion
problem [1], and had nibbled away at its edges. Lowdin [2] had or-
ganized much of reduced density matrix technology without really
advancing its basics. Then, Coleman dipped in, concisely formu-
lated its essence [3], and raised the activity to what might be
termed a professional level. The tight formulation gave the field
the imprimateur of universality, and in later years, it was applied
to quantum information theory as well [4]. Coleman returned to
the topic on occasion [5], and in his later years, developed more
interest in its applicability to specific physical problems [6]. He
did not have the same confidence in the uncontrolled approxima-
tions endemic to this activity, and we were in contact on several
occasions on such issues.

I would like to present an elaboration of a viewpoint I have
emphasized of late [7], in which the explicit nature of the system
of interest leads to enhanced control of fermion systems. I am sure
that Coleman would have approved and would of course have
made major contributions along these lines. Alas, this was not to
be.

1. Introduction

Nature has provided theoretical physical scientists with a won-
derful gift: the many orders of magnitude between the spatial

structural scales of the basic constituents of matter and that of
their electronic and nuclear components, which can then be char-
acterized by a very small number of parameters—mass, charge,
spin, etc. Coupled with the fantastic accuracy of basic dynamical
laws, these might appear to reduce questions in the physical sci-
ences to the ‘‘mere’’ working out of associated mathematics.
Would that were the case (and it would then be pretty boring!).
Of course, it all depends upon precisely what one means by
mathematics.

Traditional mathematics is woefully inadequate in the treat-
ment of many-body systems—those composed of many identical
indistinguishable particles (no formal restriction since one can ex-
pand the space on which they live to incorporate defining charac-
teristics—mass, spin, charge, . . . ). In our discussion, relating very
much to work in progress, we want to emphasize one philosophical
and two technical points.

The philosophical point is that, however we define the ‘‘solution’’
of the system, we are not going to get exact solutions, except perhaps
for illustrative models, and in practice, exquisite detail would be
obvious overkill, What we really want are results at a decent—per-
haps cartoonish—level of resolution to produce an overall picture
which however we know how to sequentially improve. Inequalities
bounding the level of uncertainty, are clearly the tools of choice,
unfamiliar though they may be.

The first technical point—or is it philosophical?—is that few-body
sums, because the identity of the bodies is in principle unavailable,
in fact sample the whole system, and are expected to be basic in any
description. In particular, the powerful variational principles for
few-body interacting systems will be expressed in such terms
(and when they are not, as with entropy, their variation can be so
expressed, and this will suffice). The problem here is to guarantee
that an N-body system is the hidden generator.
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The second technical point is that, when many particles are in
question, collective ‘‘fluid’’ description is clearly called for, but
one must make sure that the fluid is not infinitely divisible, i.e. is
composed of discrete particles.

2. Prototype-ground state of classical lattice gas

Suppose the particles of a static N-body system interact only
pairwise (in fact, all interactions can be developed from successive
contact with an enveloping fluid of ‘‘quanta’’), and are subject to an
external field as well. For definiteness, the particles live on a lattice
of X sites. Then the system (potential) energy takes the form

U ¼
XN

1

uðxiÞ þ
1
2

X0
N

1

vðxi; xjÞ

where the prime 0 signifies i – j, avoiding specific self-interaction
terms. Now at what microstate—the set of locations xi—is the lowest
value of U achieved? For a conceptual simplification, introduce the
single and pair site occupations

nðxÞ ¼
XN

1

dðx; xiÞ

n2ðx; yÞ ¼
X0

N

1

dðx; xiÞdðy; xjÞ ½¼ nðxÞðnðyÞ � dðx; yÞÞ�

in which case

U ¼
X

x

uðxÞnðxÞ þ 1
2

X
x;y

vðx; yÞn2ðx; yÞ:

This relation is linear in the pair density, and of course in that of the
strictly dependent

nðxÞ ¼ 1=ðN � 1Þ
X

y

n2ðx; yÞ:

For an ensemble, a convex linear combination of microstate densi-
ties, it then remains valid, with U, n, n2 replaced by their ensemble
averages:

U ¼
X

x

uðxÞnðxÞ þ 1
2

X
x;y

n2ðx; yÞ:

Minimization of U over the ensemble of microstates is now guaran-
teed by convexity to produce the same energy and (if non-degener-
ate) the same microstate as the original microstate minimization.

This looks great! n and n2, while still non-negative and normal-
ized, are not confined to integers, and we seem to have reduced our
N-body minimization problem to a proxy 2-body problem. This
need not be the case because we still must be sure that, e.g. n2

can be obtained as an average of some collection of microstates.
Let us crawl before we walk.

(a) Suppose the lattice has only 2 sites, A and B (see Fig. 1), and
N = 3 particles are to be partitioned between these. The micro-
states are then (S,T) where S + T = 3, and S and T integers P0.
An ensemble results from weights w(S,T) where

P
wðS; TÞ ¼ 1

and 0 6 w(S,T). It follows that n2 (A,A) = 3w(3,0) + w(2,1); � � �
n2(B,B) = w(1,2) + 3w(0,3), or converting to relative frequen-
cies p = n/6 that

pAA ¼
1
2

wð3;0Þ þ 1
6

wð2;1Þ . . . pBB ¼
1
6

wð1;2Þ þ 1
2

wð0;3Þ

and these are solvable for the w(S,T) if and only if, S and T lie in the
region shown: 1 P pAA þ pBB P 1

3 ; pAA; pBB P 0.

(b) N ?1 on a 2-site lattice. Now, n2(A,A) = S(S � 1), . . . , n2

(B,B) = T(T � 1), so that S ¼ 1
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðA;AÞ þ 1

4

� �q
; T ¼ 1

2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðB;BÞ þ 1

4

� �q
.

It follows that the microstates satisfy

N ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðA;AÞ þ

1
4

� �s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðB;BÞ þ

1
4

� �s
:

Now, with p = n2/N(N � 1) and N ?1, we obtain at onceffiffiffiffiffiffiffi
pAA
p þ ffiffiffiffiffiffiffi

pBB
p ¼ 1;

whose convex extension, Fig. 2, is considerably more restrictive
than in the previous few-particle case: the fluid limit imposes
unphysical constraints.

(c) We proceed to a lattice of X sites, but rapidly go over to the
fluid limit, in which N ?1, but uniformly. The microstates
are again determined by the singlet site occupations n(x),
in terms of which the pair occupations are clearly

n2ðx; xÞ ¼ nðxÞðnðxÞ � 1Þ
n2ðx; yÞ ¼ nðxÞnðyÞ for y – x:

We want to be able to enforce putative ensemble pair densities,

n2ðx; yÞ ¼
X
fxig

wfxig n2ðx; yjfxigÞ;

where wfxigP 0 and
X
fxig

wfxig ¼ 1

by requiring a suitable set of inequalitiesX
x;y

Cðljx; yÞ n2ðx; yÞP 0

which are also sufficient. For the latter to hold, we specialize to
microstates n2. Doing so we haveX

x;y

Cðljx; yÞnðxÞðnðyÞ � dðx; yÞÞP 0

for all matrices C(x,y) in the set of inequalities.
Equivalently, if N ?1 uniformly, we set p(x) = n(x)/N and obtain
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Fig. 1. Allowed space for three particles on two sites.
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Fig. 2. Allowed space for N ?1 particles on two sites.
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