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a b s t r a c t

The second-order reduced density matrix method (the RDM method) has performed well in determining
energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles
with perturbative triples (CCSD (T)) accuracy without using the wave-function. One question that arises
is how well does the RDM method perform with the same conditions that result in CCSD (T) accuracy in
the strong correlation limit. The simplest and a theoretically important model for strongly correlated
electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when
employing the P,Q,G,T1 and T20 conditions in the two-dimensional Hubbard model case and we conduct a
thorough study applying the 4 � 4 Hubbard model employing a coefficients. Within the Hubbard Ham-
iltonian we found that even in the intermediate setting, where U/t is between 4 and 10, the P, Q, G, T1
and T20 conditions reproduced good ground state energies.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The second-order reduced density matrix is necessary and suf-
ficient to compute all the physical properties that one can compute
using the wave-function [1]. Due to its simplicity, it has been a
dream for quantum chemists to directly determine the second-or-
der reduced density matrix instead of using the wave-function, and
we believe that it should be simpler to determine than solving the
Schrödinger equation.

When an appropriate subset of necessary N-representability
conditions, a term coined by Coleman [2], are used as constraints
in a variational calculation of the second-order reduced density
matrix one is able to compute accurate energies of the second-or-
der reduced matrices producing accurate energies and properties.
This approach is known as the RDM method and has a long history
[3,4]. Unfortunately, the RDM method faded away because no algo-
rithm for systematic calculations was available at the time and the
N-representability condition was not very well understood.

After 25 years, in 2001, Nakata et al. formulated the RDM
method as the standard form of the primal semidefinite program-
ming problem. They performed a systematic study on small (few
electron) atoms and molecules [5]. They used the P, Q [2], and G

conditions [6] as the N-representability constraints that resulted
in 120% of correlation energies. These promising results led Zhao
et al. three years later to include the T1, and the T2-conditions in
addition to the P, Q, and G conditions in the RDM method giving re-
sults with similar accuracy to coupled-cluster singles and doubles
with perturbative triples (CCSD (T)) for atomic and molecular sys-
tems [8,7,9]. Since then, research along these lines has spread with
enthusiasm and several papers have been published [10].

However, the correlation in molecular systems is not especially
strong. We want to investigate the robustness of these conditions
in predicting accurate energies in the case of strong correlation. To
test this, we have chosen to employ the Hubbard model [11]. This
model is interesting not only because of its simplicity, but also its
capability of describing strong electron correlation. The RDM meth-
od has been applied to the Hubbard model by Hammond and
Mazziotti [12], Nakata et al. [9], and Verstichel et al. [13]. Their re-
sults very accurately described total energies as well as other prop-
erties. However, they only treated the one-dimensional Hubbard
model, which can be solved analytically by the Bethe-Ansatz as dem-
onstrated by Lieb and Wu [14]. It can also be treated numerically by
the density matrix renormalization group (DMRG) method [17]. As a
result, the behavior of the correlation is rather well understood [15].
Very recently, Barthel and Hübener applied the RDM method to the
XXZ model and the Hubbard model for spinless fermions [16]. A
direct comparison with present results is not possible due to differ-
ence of the models.
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The challenge for the condensed matter physics community is,
thus, to compute the ground state energy and properties of the
two-dimensional Hubbard model since no analytic results are
available as they are in the one-dimensional case. Still, it is an open
question, but it is believed that two-dimensional Hubbard model is
the simplest model that exhibits the high-Tc superconductivity of
copper oxide [18]. The underlying physics of the Hubbard Hamilto-
nian remains a topic of considerable discussion [19].

This problem can be reduced to the eigenvalue problem of astro-
nomically large symmetric matrices. Extensive numerical studies
[20] have been done using the Quantum Monte Carlo (QMC) method,
the Exact Diagonalization (ED) method (also known as the full con-
figuration interaction (FCI) method), and the DMRG method. How-
ever, we can solve very small two-dimensional Hubbard model
system without much difficulty. To the best of the authors’
knowledge the largest two-dimensional Hubbard model systems
that have been treated are the 10 � 10 square lattice by Sorella or
16 � 16 square lattice by Chen et al. [21], 40 to 64 rectangular or
square lattices by the DMRG [22], and the
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by the Exact
Diagonalization [23]. Aside from the Exact Diagonalization, the
accuracy of the ground state energies can be dubious.

Advantages of the RDM method are: this method calculates the
lower bound to the FCI energy in the same basis set whereas all of
the other methods give upper bounds, thus this approach is com-
plementary to the former methods. This method does not require
extrapolation to the absolute zero-temperature. It does not suffer
from minus sign problem in QMC [31]. It does not depend on the
choice of lattice which may appear in DMRG calculation [32].

In this paper, we calculated the total energies of the two-dimen-
sional Hubbard model using the RDM method and compared them
to the exact results from ALPS [25] to examine whether the P, Q, G,
T1 and T20 conditions are physically important in strongly corre-
lated system. The rest of paper is organized as follows. In Section
2, we briefly review the RDM method, the N-representability con-
ditions, semidefinite programming, and the Hubbard models. The
results and discussion are shown in Section 3. The conclusions
are in Section 4.

2. Theory

2.1. Reduced density matrices

The second-order density matrix is an example of a broader
class of density matrices. The most general form is the M-th order
density matrix. This has the form

ðMÞCi1 i2 ���iM
j1j2 ���jM

¼ 1
M!

W ayi1 ayi2 � � � a
y
iM

ajM � � � aj2 aj1

��� ���WD E
The second-order reduced density matrix is an important special
case. This is the reduced density matrix that we are utilizing. Explic-
itly, it has the form:

Ci1 i2
j1j2
¼ 1

2!
W ayi1 ayi2 aj2 aj1

��� ���WD E
:

When dealing with the 1-body terms (present in most Hamiltonians
of interest and several properties operators), the second-order re-
duced density matrix reduces to the first-order reduced density ma-
trix defined as:

ci
j ¼ W ayi aj

�� ��W� �
;

where a� and a denote the creation and annihilation operators,
respectively, and W is the N-particle antisymmetric wave-function.
Note that it is usually denoted by ci

j instead of by Ci
j.

The second-order reduced density matrix has seen renewed
interest for computing dynamical properties of a quantum

mechanical system governed by the electronic Hamiltonian. When
this descriptor was first introduced as a descriptor for electronic
structure it was met with enthusiasm [3]. Unfortunately, when
the RDM method was applied to nuclear systems like 24Mg;28Si,
the energies were found to be far below the expected value [4].
This is because the second-order reduced density matrix that re-
sulted from these calculations did not originate from any wave-
function [2]! Every reduced density matrix of interest must result
from some wave-function (this wave-function is known as the
ancestor wave-function). The problem of reduced density matrices
not arising from ancestor wave-functions is what Coleman [2]
coined the N-representability problem. Currently the necessary
and sufficient conditions that guarantee N-representability are
not known in any practical form [24]. Fortunately, several neces-
sary conditions are known. Using only the P, Q, G, T1, and T20 (nec-
essary) conditions have been shown to reliably obtain chemical
accuracy [7,9].

2.2. N-representability conditions

N-representability is the necessary and sufficient conditions that
a density matrix originates from some (ancestor) wave-function
[2]. For the first-order density matrix to be N-representable its
eigenvalues should lie in the closed interval [0,1] [26,2]. Since we
know these conditions in an implementable form and due to
Gilbert’s theorem [27], one can construct a method using only the
1-RDM. This method is sometimes referred as the density-matrix
functional theory (DMFT) method [34]. The N-representability con-
ditions are not limited to density matrices. The N-representability
conditions for the electron density are known [27]. For the wave-
function itself they are very simple, simply ensure the basis func-
tions are square integrable and antisymmetric (change sign) with
respect to the interchange of any two electron coordinates (Pauli
principle).

Unfortunately, the second-order density matrix N-represent-
ability conditions are not known in any useful form (i.e. an
uncountable set of conditions) [6,24]. However, many necessary
conditions are known. Some trivial conditions are trace conditions;X

i

ci
i ¼ N;

X
ij

Cij
ij ¼ NðN � 1Þ=2; ð1Þ

and

ci
j ¼
ðN � 1Þ

2
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An incomplete list of necessary conditions alone are not enough to
guarantee N-representability. However, using them within the
RDM method gives strict lower bounds to the energy. The general
strategy within the RDM method is to choose necessary conditions
that are easily implementable, computationally inexpensive, and
result in accurate energies. Of course, the more necessary condi-
tions used the better the answer (though how much the energy
is improved depends on the system being investigated and the
necessary condition being used). The most commonly utilized con-
ditions used within the RDM method are positive-semidefinite
type of N-representability conditions; the P, Q [2] and G conditions
[6].

The P-condition is formulated by starting from the simple fact
that if A is an arbitrary one-particle operator, then the expectation
value of A�A should be non-negative,

hAyAi ¼ TrðAyAÞC P 0:

If we restrict A to A ¼
P

cijaiaj, for an arbitrary set of real numbers
cij, then
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