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a b s t r a c t

We introduce the localized pair model of electronic structure analysis and propose the two-electron
reduced density matrix as an important interpretive tool in chemistry. Interelectronic probability distri-
butions in position and momentum space are calculated for individual localized molecular orbitals cor-
responding to intuitive chemical features such as lone pairs and chemical bonds. It is demonstrated that
these may be interpreted as the distribution of electrons within a chemical bond or lone pair and we refer
to this model as the localized pair model of electronic structure analysis. Specifically, the Hartree–Fock
level of theory is employed in conjunction with a completely uncontracted 6-311G (d,p) basis set to con-
struct our localized orbitals. Spherically averaged position and momentum intracules are calculated for
each orbital and we present results for orbitals of p-block hydrides, saturated main group compounds,
fluorinated species, N ? B dative structures, and small cyclic molecules. We find that our analysis gener-
ally agrees quite well with intuitive predictions based on bond lengths and electronegativities of the
bonded atoms. However the trends in the data cannot be predicted using the bond length or electroneg-
ativity alone, which demonstrates the unique features of this model.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In their influential book, ‘‘Reduced Density Matrices: Coulson’s
Challenge’’, John Coleman and Vyacheslav Yukalov eloquently de-
scribe the impressive predictive power contained within the sec-
ond order reduced density matrix, or 2-matrix as it is commonly
known, given by [1]

q2ðr1; r2Þ ¼
nðn� 1Þ

2

Z
jWðx1; . . . ; xnÞj2 ds1 ds2 dx3 . . . dxn ð1Þ

where xi = (ri,si) denotes the combined position and spin coordi-
nates of electron i. They discuss the attractive prospect of employ-
ing the 2-matrix as the fundamental quantity for the general
prediction of the energy levels of chemical systems. Of course the
concept of an electron pair as a fundamental entity in chemistry
is ubiquitous and it is therefore a natural choice for electronic struc-
ture prediction. Here we offer a complementary application of the
so-called 2-matrix for the analysis of electronic structure. We argue
that the 2-matrix can serve as an important interpretive tool in
quantum chemistry and we show briefly that ubiquitous concepts
such as the chemical bond may be scrutinized in new and intuitive
ways with some creative applications of it.

Since the days of Lewis [2], chemists have been enamoured with
the concept of a localized electron pair to represent the now intu-
itive features of electronic structure such as the so-called lone pair

and the chemical bond itself. Despite its simplicity, the Lewis mod-
el yields an impressive wealth of predictive ability in terms of
molecular structure [3] and chemical properties and is a universal
concept in the chemical literature. Is there a way to link the es-
sence of the Lewis model to the quantum mechanical description
of electron pairs? Within the orbital approximation in quantum
mechanics, the delocalized canonical molecular orbitals (CMOs)
of a general chemical system bear little resemblance to the features
of a Lewis structure. In contrast however, CMOs are amenable to a
unitary transformation to afford the less well-known [4–10] local-
ized molecular orbitals (LMOs)[11–13]. These are an equivalent
description of electronic structure and yield intuitive and highly
transferable orbitals that can be said to represent individual bonds,
lone pairs, and core electrons (vide infra). It is within the space of
LMOs then, that we should find such a link.

While the Lewis model can be remarkably powerful in its pre-
diction of molecular structure and some properties; it yields little
information regarding the distribution of the electrons themselves.
Are electrons within a particular pair generally close together, or
far apart? Do they move quickly or slowly? How do these distribu-
tions change with the chemical environment? Most importantly,
do these quantities relate to observable chemical properties? We
seek to address these important questions in the present article.
To do this, we calculate interelectronic probability distributions,
also known as intracules, for particular LMOs. A position intracule,
P(u), is the probability distribution for u = jr2 � r1j, and therefore
yields the likelihood of a pair of electrons being separated by a dis-
tance u
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PðuÞ ¼
Z

q2ðr1; r2Þdðr12 � uÞ dr1 dr2 dXu ð2Þ

In the above expression, d is a Dirac delta function and dXu indi-
cates integration over the angular components of the u vector. As
such, P(u) is often referred to as the ‘‘spherically averaged’’ intracule
density.

Likewise, the spherically averaged momentum intracule, M(v), is
the probability distribution for v = jp2 � p1j (where pi describes the
position of electron i in momentum space), and describes the rela-
tive momenta of two electrons. We can compute this distribution
in an analogous fashion as P(u) by replacing q2(r1,r2) with its
momentum space analogue, p2(p1,p2)[14,15]

Fig. 1. A comparison of the position (top) and momentum (bottom) intracules for
the water O–H bond. Note the FB (green) result is not visible, as it coincides with the
ER (red) result. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. A comparison of the five molecular orbitals of water determined with each of
the three localization procedures. The contour value of these orbitals is 0.10 a.u.,
with the exception of the core orbital on the far left, whose contour value is 0.03 a.u.
to make it visible.

Fig. 3. A comparison of the position (top) and momentum (bottom) intracules of
first and second row hydride X–H bonds.

Fig. 4. A plot of the experimental bond dissociation energies (kcal/mol) of the
p-block hydrides versus the first inverse moment of the position and momentum
bond intracules.
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